Open Access. Powered by Scholars. Published by Universities.®

Oil, Gas, and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Separations Campaign (TRP)

2005

Curium

Articles 1 - 2 of 2

Full-Text Articles in Oil, Gas, and Energy

The Electrochemical Separation Of Curium And Americium: Quaterly Report April - June, 2005, David W. Hatchett, Kenneth Czerwinski Jun 2005

The Electrochemical Separation Of Curium And Americium: Quaterly Report April - June, 2005, David W. Hatchett, Kenneth Czerwinski

Separations Campaign (TRP)

This research report outlines the current status and progress associated with the electrochemical separation of Curium and Americium.

Results

• We have completed the electrochemical investigation in of the Ce3+/Ce4+ redox couple and have determined the optimum experimental conditions.

• Computer modeling of the cerium using the JChess speciation-modeling program has been completed for the Ce redox couple. Traditional complexing ligands such as EDTA, oxalate, NTA, phosphate, acetate, and sulfate have been purchased and will be used to initiate the complexation and electrochemical characterization.

• Electrochemical investigations have continued on the Eu2+/Eu3+ redox …


Electrochemical Separation Of Curium And Americium, David W. Hatchett, Kenneth Czerwinski Jan 2005

Electrochemical Separation Of Curium And Americium, David W. Hatchett, Kenneth Czerwinski

Separations Campaign (TRP)

The objective of this project is to use electrochemical techniques to develop a thermodynamic understanding of actinide and lanthanide species in aqueous solution and use this data to effectively separate species with very similar chemical properties. In consultation with our DOE collaborator, electrochemical methods and materials will be evaluated and used to exploit the thermodynamic differences between similar chemical species enhancing our ability to selectively target and sequester individual species from mixtures.

The following were specific goals for this year:

  • To develop a fundamental understanding of the thermodynamic properties of actinide and lanthanide species such as Cm, Am, Ce, Nd, …