Open Access. Powered by Scholars. Published by Universities.®

Soil Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Soil Science

Soil Carbon Dynamics And Greenhouse Gas Emissions In Conservation Tillage Systems At Multiple Scales, Yawen Huang Jan 2020

Soil Carbon Dynamics And Greenhouse Gas Emissions In Conservation Tillage Systems At Multiple Scales, Yawen Huang

Theses and Dissertations--Plant and Soil Sciences

Conservation tillage practices like no-tillage and reduced tillage have been widely implemented worldwide, with expectations they would provide multiple benefits (e.g., yield enhancement and soil carbon sequestration) for food security and climate adaptation and mitigation. However, the adoption of conservation tillage faces both opportunities and challenges. A knowledge gap still exists regarding the effects of conservation tillage on the carbon cycle in agroecosystems. This dissertation reflects a comprehensive evaluation of conservation tillage at multiple scales using an integrated systems approach, a combination of data synthesis, the agriculture ecosystem model, and field observations and measurements. I first conducted a meta-analysis to …


Climate Change Impacts On Winter Wheat Yield In Northern China, Xiu Geng, Fang Wang, Wei Ren, Zhixin Hao Jun 2019

Climate Change Impacts On Winter Wheat Yield In Northern China, Xiu Geng, Fang Wang, Wei Ren, Zhixin Hao

Plant and Soil Sciences Faculty Publications

Exploring the impacts of climate change on agriculture is one of important topics with respect to climate change. We quantitatively examined the impacts of climate change on winter wheat yield in Northern China using the Cobb–Douglas production function. Utilizing time-series data of agricultural production and meteorological observations from 1981 to 2016, the impacts of climatic factors on wheat production were assessed. It was found that the contribution of climatic factors to winter wheat yield per unit area (WYPA) was 0.762–1.921% in absolute terms. Growing season average temperature (GSAT) had a negative impact on WYPA for the period of 1981–2016. A …


Breeding For Resilience To Increasing Temperatures: A Field Trial Assessing Genetic Variation In Soft Red Winter Wheat, Kathleen Russell, David Van Sanford Dec 2018

Breeding For Resilience To Increasing Temperatures: A Field Trial Assessing Genetic Variation In Soft Red Winter Wheat, Kathleen Russell, David Van Sanford

Plant and Soil Sciences Faculty Publications

Breeding for resilience to climate change is a daunting prospect. Crop and climate models tell us that global wheat yields are likely to decline as the climate warms, causing a significant risk to global food security. High temperatures are known to affect crop development yet breeding for tolerance to heat stress is difficult to achieve in field environments. We conducted an active warming study over two years to quantify the effects of heat stress on genetic variation of soft red winter (SRW) wheat (Triticum aestivum L.). Forty SRW cultivars and breeding lines were chosen based on marker genotypes at …


Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang Apr 2018

Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang

Plant and Soil Sciences Faculty Publications

Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United …


Herbivory And Eutrophication Mediate Grassland Plant Nutrient Responses Across A Global Climatic Gradient, T. Michael Anderson, Daniel M. Griffith, James B. Grace, Eric M. Lind, Peter B. Adler, Lori A. Biederman, Dana M. Blumenthal, Pedro Daleo, Jennifer Firn, Nicole Hagenah, W. Stanley Harpole, Andrew S. Macdougall, Rebecca L. Mcculley, Suzanne M. Prober, Anita C. Risch, Mahesh Sankaran, Martin Schütz, Eric W. Seabloom, Carly J. Stevens, Lauren L. Sullivan, Peter D. Wragg, Elizabeth T. Borer Apr 2018

Herbivory And Eutrophication Mediate Grassland Plant Nutrient Responses Across A Global Climatic Gradient, T. Michael Anderson, Daniel M. Griffith, James B. Grace, Eric M. Lind, Peter B. Adler, Lori A. Biederman, Dana M. Blumenthal, Pedro Daleo, Jennifer Firn, Nicole Hagenah, W. Stanley Harpole, Andrew S. Macdougall, Rebecca L. Mcculley, Suzanne M. Prober, Anita C. Risch, Mahesh Sankaran, Martin Schütz, Eric W. Seabloom, Carly J. Stevens, Lauren L. Sullivan, Peter D. Wragg, Elizabeth T. Borer

Plant and Soil Sciences Faculty Publications

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, …


Effects Of Climate Warming On Net Primary Productivity In China During 1961–2010, Fengxue Gu, Yuandong Zhang, Mei Huang, Bo Tao, Rui Guo, Changrong Yan Jul 2017

Effects Of Climate Warming On Net Primary Productivity In China During 1961–2010, Fengxue Gu, Yuandong Zhang, Mei Huang, Bo Tao, Rui Guo, Changrong Yan

Plant and Soil Sciences Faculty Publications

The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process-based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961–2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of …


Mapping Irrigated And Rainfed Wheat Areas Using Multi-Temporal Satellite Data, Ning Jin, Bo Tao, Wei Ren, Meichen Feng, Rui Sun, Liang He, Wei Zhuang, Qiang Yu Mar 2016

Mapping Irrigated And Rainfed Wheat Areas Using Multi-Temporal Satellite Data, Ning Jin, Bo Tao, Wei Ren, Meichen Feng, Rui Sun, Liang He, Wei Zhuang, Qiang Yu

Plant and Soil Sciences Faculty Publications

Irrigation is crucial to agriculture in arid and semi-arid areas and significantly contributes to crop development, food diversity and the sustainability of agro-ecosystems. For a specific crop, the separation of its irrigated and rainfed areas is difficult, because their phenology is similar and therefore less distinguishable, especially when there are phenology shifts due to various factors, such as elevation and latitude. In this study, we present a simple, but robust method to map irrigated and rainfed wheat areas in a semi-arid region of China. We used the Normalized Difference Vegetation Index (NDVI) at a 30 × 30 m spatial resolution …


Laboratory Simulation Of Rainfall Erosivity For Gully Formation Study, T. Y. Kao May 1974

Laboratory Simulation Of Rainfall Erosivity For Gully Formation Study, T. Y. Kao

KWRRI Research Reports

The objective of this study was to develop a rainfall simulator, which imparts to the laboratory rainfall the more important characteristics of natural rainfall such as intensity, drop spectrum, kinetic energy, and momentum at impact, for using in soil erosion research with better results. In developing this simulator the better features of the basic types of earlier simulators, drip and nozzle, have been incorporated into this single design. The simulator developed in this study consists of a number of individual box modules placed in a rectangular pattern to form a single unit. Each module has a grid of capillary holes …


Part I - Controlling The Soil Moisture Environment Of Transpiring Plants, Part Ii - Prediction Of Leaf Temperature Under Natural Atmospheric Conditions, Charles T. Haan, Billy J. Barfield, Robert Edling Jan 1970

Part I - Controlling The Soil Moisture Environment Of Transpiring Plants, Part Ii - Prediction Of Leaf Temperature Under Natural Atmospheric Conditions, Charles T. Haan, Billy J. Barfield, Robert Edling

KWRRI Research Reports

Part I

A technique for controlling the soil moisture potential in the root zone of transpiring plants was developed. The method uses the principles of unsaturated flow through a porous media to develop the desired moisture potential. In the case of non-steady state transpiration, the maximum possible fluctuation in the soil moisture potential can be determined by the techniques presented.

Part II

Two implicit leaf temperature prediction equations were derived from the energy balance approach. The equations define sensible and latent heat transfer from a plant population as a two step process:

  1. Transfer between the plant leaf and the canopy …