Open Access. Powered by Scholars. Published by Universities.®

Soil Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Soil Science

Global Patterns And Controls Of Soil Organic Carbon Dynamics As Simulated By Multiple Terrestrial Biosphere Models: Current Status And Future Directions, Hanqin Tian, Chaoqun (Crystal) Lu, Jia Yang, Kamaljit Banger, Denorah N. Huntzinger, Christopher R. Schwalm, Anna M. Michalak, Robert Cook, Philippe Ciais, Daniel Hayes, Maoyi Huang, Akihiko Ito, Atul K. Jain, Huimin Lei, Jiafu Mao, Shufen Pan, Wilfred M. Post, Shushi Peng, Benjamin Poulter, Wei Ren, Daniel Ricciuto, Kevin Schaefer, Xiaoying Shi, Bo Tao, Weile Wang, Yaxing Wei, Qichun Yang, Bowen Zhang, Ning Zeng Jun 2015

Global Patterns And Controls Of Soil Organic Carbon Dynamics As Simulated By Multiple Terrestrial Biosphere Models: Current Status And Future Directions, Hanqin Tian, Chaoqun (Crystal) Lu, Jia Yang, Kamaljit Banger, Denorah N. Huntzinger, Christopher R. Schwalm, Anna M. Michalak, Robert Cook, Philippe Ciais, Daniel Hayes, Maoyi Huang, Akihiko Ito, Atul K. Jain, Huimin Lei, Jiafu Mao, Shufen Pan, Wilfred M. Post, Shushi Peng, Benjamin Poulter, Wei Ren, Daniel Ricciuto, Kevin Schaefer, Xiaoying Shi, Bo Tao, Weile Wang, Yaxing Wei, Qichun Yang, Bowen Zhang, Ning Zeng

Chaoqun (Crystal) Lu

Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO2) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long …


Management Strategies To Improve Yield And Nitrogen Use Of Spring Wheat And Field Pea In The Semi-Arid Northern Great Plains Usa, Andrew W. Lenssen, Brett Allen, Upendra Sainju, Thecan Caesar, Robert Lartey, Robert Evans Jan 2010

Management Strategies To Improve Yield And Nitrogen Use Of Spring Wheat And Field Pea In The Semi-Arid Northern Great Plains Usa, Andrew W. Lenssen, Brett Allen, Upendra Sainju, Thecan Caesar, Robert Lartey, Robert Evans

Andrew W. Lenssen

Available water and N fertility are primary constraints to crop production in the northern Great Plains of the USA. A field trial was initiated in 2004 to compare four crop rotations in a complete factorial of two tillage and two management systems. Rotations were continuous spring wheat (SW), pea-SW, barley hay-pea-SW, and barley hay-corn-pea-SW. Tillage systems were no till and field cultivator tillage, while management systems were conventional and ecological. Conventional management included broadcast nitrogen fertilizer, standard seeding rates, and short stubble height. Ecological management practices varied by crop, and included banded nitrogen fertilizer for cereals, increased seeding rate, delayed …