Open Access. Powered by Scholars. Published by Universities.®

Glaciology Commons

Open Access. Powered by Scholars. Published by Universities.®

Dartmouth Scholarship

Laboratory study

Discipline
Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Glaciology

The Effects Of Sulfuric Acid On The Mechanical Properties Of Ice Single Crystals, Y. L. Trickett, I. Baker, P. M.S Pradhan Sep 2000

The Effects Of Sulfuric Acid On The Mechanical Properties Of Ice Single Crystals, Y. L. Trickett, I. Baker, P. M.S Pradhan

Dartmouth Scholarship

Ice single crystals of various orientations containing various concentrations of H2SO4 up to 11.5 ppm were cut from large pucks of laboratory-grown ice. Constant-strain-rate compression tests were performed on the doped ice crystals both at −20°C at an axial strain rate of 1 × 10−5 s−1 and at −10°C at 1 × 106 s−1. The stress–strain curves showed a linearly rising stress with increasing strain, followed by a sharply declining stress after reaching a peak. With further strain, the sharp decline in stress slowed. The tests clearly showed, for the first time, that this naturally occurring impurity dramatically decreases both …


Brittle Compressive Failure Of Salt-Water Columnar Ice Under Biaxial Loading, T. R. Smith, E. M. Schulson Jun 1993

Brittle Compressive Failure Of Salt-Water Columnar Ice Under Biaxial Loading, T. R. Smith, E. M. Schulson

Dartmouth Scholarship

The brittle failure of saline columnar ice was investigated under biaxial compression at and −10° and −40°C over the range 0 ≤ R A < 1 where R A is the ratio of the intermediate to major principal compressive stress. The major principal stress and the intermediate (confining) stress were orthogonal to the columnar axes (type-A confinement); both stresses and the c-axes of the grains were co-planar. The results confirm earlier work by Hausier (1981) and Timco and Frederking (1983, 1986) on saline ice and follow similar behavior to fresh-water columnar ice found by Smith and Schulson (1993) and Frederking (1977). Failure stress and failure mode are sensitive to the confinement and two regimes of behavior are found: the failure stress first rapidly increases with R A in the range 0 ≤ R A < R T and then tends to decrease for R A > R t. The transition stress ratio, R t changes from ≈0.2 at −10°C to ≈0.1 at −40°C. The failure mode changes from axial splitting to shear faulting in the loading plane for 0 < R A < R t. Above R t failure changes to a combined mode of splitting across the columns and shear faulting out of the loading plane. The failure-stress envelope is of a truncated Coulomb-type. Damage studies show wing cracks and local fragmentation of grains involving the brine pockets. The results are explained in terms of Coulombic sliding and Hertzian crack mechanics.


The Effect Of The Specimen–Platen Interface On Internal Cracking And Brittle Fracture Of Ice Under Compression: High-Speed Photography, E. M. Schulson, M. C. Gies, G. J. Lasonde, W. A. Nixon Jun 1989

The Effect Of The Specimen–Platen Interface On Internal Cracking And Brittle Fracture Of Ice Under Compression: High-Speed Photography, E. M. Schulson, M. C. Gies, G. J. Lasonde, W. A. Nixon

Dartmouth Scholarship

Uniaxial compression experiments at –10°C at 10−3s−1 on fresh-water, granular ice have established through the use of high-speed photography that internal cracks nucleate preferentially away from the ice/platen (i/p) interface under conditions of i/p contraint, but near the interface under conditions of i/p expansion. Under conditions of little i/p interaction, cracks nucleate more or less randomly throughout the specimen. Correspondingly, the brittle-fracture strength decreases as the i/p interaction changes from compressive to tensile. These effects are explained in terms of the spatial variation of the maximum shear stress and the crack density.