Open Access. Powered by Scholars. Published by Universities.®

Glaciology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Glaciology

Topographic Control Of Asynchronous Glacial Advances: A Case Study From Annapurna, Nepal, Beth Pratt-Sitaula, Douglas W. Burbank, Arjun M. Heimsath, Neil F. Humphrey, Michael Oskin, Jaakko Putkonen Dec 2011

Topographic Control Of Asynchronous Glacial Advances: A Case Study From Annapurna, Nepal, Beth Pratt-Sitaula, Douglas W. Burbank, Arjun M. Heimsath, Neil F. Humphrey, Michael Oskin, Jaakko Putkonen

All Faculty Scholarship for the College of the Sciences

Differences in the timing of glacial advances, which are commonly attributed to climatic changes, can be due to variations in valley topography. Cosmogenic 10Be dates from 24 glacial moraine boulders in 5 valleys define two age populations, late-glacial and early Holocene. Moraine ages correlate with paleoglacier valley hypsometries. Moraines in valleys with lower maximum altitudes date to the lateglacial, whereas those in valleys with higher maximum altitudes are early Holocene. Two valleys with similar equilibrium-line altitudes (ELAs), but contrasting ages, are < 5 km apart and share the same aspect, such that spatial differences in climate can be excluded. A glacial mass-balance cellular automata model of these two neighboring valleys predicts that change from a cooler-drier to warmer-wetter climate (as at the Holocene onset) would lead to the glacier in the higher altitude catchment advancing, while the lower one retreats or disappears, even though the ELA only shifted by ~120 m.


Collaborative Research: Microparticle/Tephra Analysis Of The Wais Divide Ice Core, Karl J. Kreutz, Andrei V. Kurbatov, Mark Wells, Paul Andrew Mayewski Sep 2011

Collaborative Research: Microparticle/Tephra Analysis Of The Wais Divide Ice Core, Karl J. Kreutz, Andrei V. Kurbatov, Mark Wells, Paul Andrew Mayewski

University of Maine Office of Research Administration: Grant Reports

This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and …