Open Access. Powered by Scholars. Published by Universities.®

Geophysics and Seismology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Geophysics and Seismology

Simulation Of Wave Propagation In Granular Particles Using A Discrete Element Model, Syed Tahmid Hussan Jan 2024

Simulation Of Wave Propagation In Granular Particles Using A Discrete Element Model, Syed Tahmid Hussan

Electronic Theses and Dissertations

The understanding of Bender Element mechanism and utilization of Particle Flow Code (PFC) to simulate the seismic wave behavior is important to test the dynamic behavior of soil particles. Both discrete and finite element methods can be used to simulate wave behavior. However, Discrete Element Method (DEM) is mostly suitable, as the micro scaled soil particle cannot be fully considered as continuous specimen like a piece of rod or aluminum. Recently DEM has been widely used to study mechanical properties of soils at particle level considering the particles as balls. This study represents a comparative analysis of Voigt and Best …


A Conservative Numerical Scheme For The Multilayer Shallow Water Equations, Evan Butterworth May 2022

A Conservative Numerical Scheme For The Multilayer Shallow Water Equations, Evan Butterworth

All Theses

An energy-conserving numerical scheme is developed for the multilayer shallow water equations (SWE’s). The scheme is derived through the Hamiltonian formulation of the inviscid shallow water flows related to the vorticity-divergence variables. Through the employment of the skew-symmetric Poisson bracket, the continuous system for the multilayer SWE’s is shown to preserve an infinite number of quantities, most notably the energy and enstrophy. An energy-preserving numerical scheme is then developed through the careful discretization of the Hamiltonian and the Poisson bracket, ensuring the skew-symmetry of the latter. This serves as the groundwork for developing additional schemes that preserve other conservation properties …


Joint Inversion Of Gpr And Er Data, Diego Domenzain May 2020

Joint Inversion Of Gpr And Er Data, Diego Domenzain

Boise State University Theses and Dissertations

Imaging the subsurface can shed knowledge on important processes needed in a modern day human's life such as ground-water exploration, water resource monitoring, contaminant and hazard mitigation, geothermal energy exploration and carbon dioxide storage. As computing power expands, it is becoming ever more feasible to increase the physical complexity of Earth's exploration methods, and hence enhance our understanding of the subsurface.

We use non-invasive geophysical active source methods that rely on electromagnetic fields to probe the depths of the Earth. In particular, we use Ground penetrating radar (GPR) and Electrical resistivity (ER). Both methods are sensitive to electrical conductivity while …


Defining Historical Earthquake Rupture Parameters And Proposed Slip Distributions Through Tsunami Modeling In South-Central Chile, Alexander Dolcimascolo Jan 2019

Defining Historical Earthquake Rupture Parameters And Proposed Slip Distributions Through Tsunami Modeling In South-Central Chile, Alexander Dolcimascolo

All Master's Theses

Reliable tsunami early warning forecasts rely on accurate initial modeling conditions and interpretations of subduction zone behavior in a multi-century perspective. GPS and seismologic data were introduced this past century to study rupture dynamics in detail, however limited information is known about ruptures that pre-date the 20th century. I propose a methodology that uses statistics to better understand these pre-20th century ruptures. This methodology applies the historical and geologic tsunami record as a means to select a suite of tsunami simulations from earthquake source solutions. I chose south-central Chile (46°S to 30°S) to test this new methodology; it …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Paleomagnetism And Investigation Of 40 Ma Lavas, Liverpool Range, New South Whales, Australia, Nathan M. Padilla Oct 2011

Paleomagnetism And Investigation Of 40 Ma Lavas, Liverpool Range, New South Whales, Australia, Nathan M. Padilla

Physics

The main focus of this project is the continued study of a reversal of the earth’s magnetic field recorded from lavas in the Liverpool Range of New South Whales, Australia. This reverse-to-normal transition, recently dated at ~40 Ma, was first reported in Nature in 1986. [2] In March 2011 some 200+ cores were drilled from several sections about the volcanic range—Jemmy’s Creek, Bald Hill, Rock Creek, Yarraman, and Coolah Tops Road. Here we focus on paleomagnetic findings from samples drilled from the most extensive section, that being along the trail near Jemmy’s Creek. Results from alternating field demagnetization show the …