Open Access. Powered by Scholars. Published by Universities.®

Geophysics and Seismology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Geophysics and Seismology

Historical Tsunami Observability For Izu–Bonin–Mariana Sources, Walter Szeliga, Rachelle Reisinger, Breanyn T. Macinnes Dec 2022

Historical Tsunami Observability For Izu–Bonin–Mariana Sources, Walter Szeliga, Rachelle Reisinger, Breanyn T. Macinnes

Geological Sciences Faculty Scholarship

The Izu–Bonin–Mariana Subduction System (IBM) is one of the longest subduction zones in the world with no instrumental history of shallow focus, great earthquakes (Mw > 8). Over the last 50 years, researchers have speculated on the reason for the absence of large magnitude, shallow seismicity on this plate interface, exploring factors from plate age to convergence rate. We approach the question from a different point of view: what if the IBM has hosted great earthquakes and no documentable evidence was left? To address the question of observability, we model expected tsunami wave heights from nine great earthquake scenarios on the …


Incorporating Universal Design Into Tsunami Modeling Results For Cascadia Subduction Zone Faults To Create An Inundation Map And Universally Designed Evacuation Map For Port Angeles, Wa, Hannah Rose Spero, Breanyn Macinnes, Naomi J. Petersen May 2021

Incorporating Universal Design Into Tsunami Modeling Results For Cascadia Subduction Zone Faults To Create An Inundation Map And Universally Designed Evacuation Map For Port Angeles, Wa, Hannah Rose Spero, Breanyn Macinnes, Naomi J. Petersen

Student Published Works

Current tsunami hazard inundation and evacuation maps in the Puget Sound are based primarily on Cascadia and Seattle fault tsunamis. The standard evaluation process for tsunami impacts focuses on elevation and hypothetical fault rupture of known and predicted earthquakes. However, there are several known tsunami deposits in the Puget Sound that are not from Cascadia or Seattle fault tsunamis, potentially from other faults within the region, that could affect tsunami mitigation. Work to understand newly discovered crustal deformation and faults in Puget Sound is ongoing, therefore evacuation and inundation maps need to be updated to include these new faults and …


Toward Near‐Field Tsunami Forecasting Along The Cascadia Subduction Zone Using Rapid Gnss Source Models, Amy L. Williamson, Diego Melgar, Brendan W. Crowell, Diego Argas, Timothy I. Melbourne, Yong Wei, Kevin Kwong Aug 2020

Toward Near‐Field Tsunami Forecasting Along The Cascadia Subduction Zone Using Rapid Gnss Source Models, Amy L. Williamson, Diego Melgar, Brendan W. Crowell, Diego Argas, Timothy I. Melbourne, Yong Wei, Kevin Kwong

Geological Sciences Faculty Scholarship

Over the past 15 years and through multiple large and devastating earthquakes, tsunami warning systems have grown considerably in their efficacy in providing timely and accurate forecasts to affected communities. However, one part of tsunami warning that still needs improvement is forecasts catered to local, near‐field communities in the time after an earthquake rupture but before coastal inundation. In this study, we test a rapid, Global Navigation Satellite Systems (GNSS)‐driven earthquake characterization model using a large data set of synthetic megathrust ruptures for its near‐field tsunami forecasting potential. We also provide a framework for tsunami forecasting that focuses on the …


Glacier Slip And Seismicity Induced By Surface Melt, Peter L. Moore, J. Paul Winberry, Neal R. Iverson, Knut A. Christianson, Sridhar Anandakrishnan, Miriam Jackson, Mark E. Mathison, Denis Cohen Dec 2013

Glacier Slip And Seismicity Induced By Surface Melt, Peter L. Moore, J. Paul Winberry, Neal R. Iverson, Knut A. Christianson, Sridhar Anandakrishnan, Miriam Jackson, Mark E. Mathison, Denis Cohen

All Faculty Scholarship for the College of the Sciences

Many of the key processes governing fast glacier flow involve interaction between a glacier and its basal hydrological system, which is hidden from direct observation. Passive seismic monitoring has shown promise as a tool for remotely monitoring basal processes, but lack of glacier-bed access prevents clear understanding of the relationships between subglacial processes and corresponding seismic emissions. Here we describe direct measurements of basal hydrology, sliding, and broadband seismicity made in a unique subglacial facility in Norway during the onset of two summer melt seasons. In the most pronounced of these episodes, rapid delivery of surface meltwater to the bed …