Open Access. Powered by Scholars. Published by Universities.®

Geology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Geology

Differentiating Fissure-Fed Lava Flow Types And Facies Using Radar And Lidar: An Example From The 2014–2015 Holuhraun Lava Flow-Field, Gavin Douglas Tolometti, Catherine D. Neish, Christopher W. Hamilton, Gordon R. Osinski, Antero Kukko, Joana R.C. Voigt Jun 2022

Differentiating Fissure-Fed Lava Flow Types And Facies Using Radar And Lidar: An Example From The 2014–2015 Holuhraun Lava Flow-Field, Gavin Douglas Tolometti, Catherine D. Neish, Christopher W. Hamilton, Gordon R. Osinski, Antero Kukko, Joana R.C. Voigt

Earth Sciences Publications

Distinguishing between lava types and facies using remote sensing data is important for interpreting the emplacement history of lava flow-fields on Earth and other planetary bodies. Lava facies typically include a mixture of lava types and record the collective emplacement history of material preserved at a particular location. We seek to determine if lava facies in the 2014–2015 Holuhraun lava flow-field are discernible using radar roughness analysis. Furthermore, we also seek to distinguish between lava types using high resolution Light Detection and Ranging (LiDAR) data. We extracted circular polarization ratios (CPR) from the Uninhabited Aerial Vehicle Synthetic Aperture Radar and …


Interpretations Of Lava Flow Properties From Radar Remote Sensing Data, Gavin Douglas Tolometti, Catherine Neish, Gordon R. Osinski, Scott S. Hughes, Shannon E. Kobs-Nawotniak Oct 2020

Interpretations Of Lava Flow Properties From Radar Remote Sensing Data, Gavin Douglas Tolometti, Catherine Neish, Gordon R. Osinski, Scott S. Hughes, Shannon E. Kobs-Nawotniak

Earth Sciences Publications

The surface morphology and roughness of a lava flow provides insight on its lava properties and emplacement processes. This is essential information for understanding the eruption history of lava fields, and magmatic processes beneath the surface of Earth and other planetary bodies such as the Moon. The surface morphology is influenced by lava properties such as viscosity, temperature, composition, and rate of shear. In this work, we seek to understand how we can interpret the emplacement processes and lava properties of lava flows using remote sensing data. Craters of the Moon (COTM) National Monument and Preserve in Idaho hosts a …


Impact Craters On Titan: Finalizing Titan's Crater Population, Joshua E. Hedgepeth Aug 2018

Impact Craters On Titan: Finalizing Titan's Crater Population, Joshua E. Hedgepeth

Electronic Thesis and Dissertation Repository

Titan is one of the most dynamic moons in the solar system. It is smaller than Earth and much colder, yet Titan is eerily similar to Earth, with rivers, rain, and seas, as well as sand seas that wrap around the equator. However, the rivers are made of hydrocarbons rather than water and the sand made of organics rather rock. We can use Titan’s impact craters to study how these processes modify the surface by comparing the craters depths, diameters and rim heights of Titan’s craters with fresh craters. Therefore, we have used the complete data set from NASA’s Cassini …


Compositional Variations Of Titan's Impact Craters Indicates Active Surface Erosion, Alyssa Werynski Jul 2018

Compositional Variations Of Titan's Impact Craters Indicates Active Surface Erosion, Alyssa Werynski

Electronic Thesis and Dissertation Repository

Impact craters on Titan are relatively scarce, but provide ample information about the subsurface properties and modification processes present there. This study utilizes impact craters to examine compositional variations across Titan’s surface and their subsequent modification. Fifteen craters and their ejecta blankets were studied. Subsurface composition was inferred from emissivity data from Cassini’s RADAR instrument, and surficial composition from Cassini’s Visible and Infrared Mapping Spectrometer (VIMS). Results show subsurface composition of these craters is controlled by their degradation state and local environment. Older craters are more infilled with organics than younger, and dunes craters show more organic enrichment than plains …