Open Access. Powered by Scholars. Published by Universities.®

Earth Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Earth Sciences

Permafrost Carbon: Progress On Understanding Stocks And Fluxes Across Northern Terrestrial Ecosystems, Claire C. Treat, Anna-Maria Virkkala, Eleanor Burke, Lori Bruhwiler, Abhishek Chatterjee, Joshua B. Fisher, Josh Hashemi, Frans-Jan W. Parmentier, Brendan M. Rogers, Sebastian Westermann, Jennifer D. Watts, Elena Blanc-Betes, Matthias Fuchs, Stefan Kruse, Avni Malhotra, Kimberley Miner, Jens Strauss, Amanda Armstrong, Howard E. Epstein, Bradley Gay, Mathias Goeckede, Aram Kalhori, Dan Kou, Charles E. Miller, Susan M. Natali, Youmi Oh, Sarah Shakil, Oliver Sonnentag, Ruth K. Varner, Scott Zolkos, Edward A.G. Schuur, Gustaf Hugelius Jan 2024

Permafrost Carbon: Progress On Understanding Stocks And Fluxes Across Northern Terrestrial Ecosystems, Claire C. Treat, Anna-Maria Virkkala, Eleanor Burke, Lori Bruhwiler, Abhishek Chatterjee, Joshua B. Fisher, Josh Hashemi, Frans-Jan W. Parmentier, Brendan M. Rogers, Sebastian Westermann, Jennifer D. Watts, Elena Blanc-Betes, Matthias Fuchs, Stefan Kruse, Avni Malhotra, Kimberley Miner, Jens Strauss, Amanda Armstrong, Howard E. Epstein, Bradley Gay, Mathias Goeckede, Aram Kalhori, Dan Kou, Charles E. Miller, Susan M. Natali, Youmi Oh, Sarah Shakil, Oliver Sonnentag, Ruth K. Varner, Scott Zolkos, Edward A.G. Schuur, Gustaf Hugelius

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane …


The Seasonal Origins And Ages Of Water Provisioning Streams And Trees In A Tropical Montane Cloud Forest, Emily Burt, Gregory R. Goldsmith, Roxanne M. Cruz-De Hoyos, Adan Julian Ccahuana Quispe, A. Joshua West Nov 2023

The Seasonal Origins And Ages Of Water Provisioning Streams And Trees In A Tropical Montane Cloud Forest, Emily Burt, Gregory R. Goldsmith, Roxanne M. Cruz-De Hoyos, Adan Julian Ccahuana Quispe, A. Joshua West

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Determining the sources of water provisioning streams, soils, and vegetation can provide important insights into the water that sustains critical ecosystem functions now and how those functions may be expected to respond given projected changes in the global hydrologic cycle. We developed multi-year time series of water isotope ratios (δ18O and δ2H) based on twice-monthly collections of precipitation, lysimeter, and tree branch xylem waters from a seasonally dry tropical montane cloud forest in the southeastern Andes mountains of Peru. We then used this information to determine indices of the seasonal origins, the young water fractions …


Inhibition Of Chromium(Iii) Oxidation Through Manganese(Iv) Oxide Passivation And Iron(Ii) Abiotic Reduction, Miranda L. Aiken, Macon J. Abernathy, Michael V. Schaefer, Ilkeun Lee, Samantha C. Ying Nov 2023

Inhibition Of Chromium(Iii) Oxidation Through Manganese(Iv) Oxide Passivation And Iron(Ii) Abiotic Reduction, Miranda L. Aiken, Macon J. Abernathy, Michael V. Schaefer, Ilkeun Lee, Samantha C. Ying

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Manganese (Mn) oxides are strong oxidants that are ubiquitous in soils and can oxidize redox-active metals, including chromium (Cr). In soil environments, trivalent chromium (Cr(III)) is a benign, immobile micronutrient, whereas the hexavalent Cr(VI) form is present as a highly mobile, toxic chromate oxyanion. Although many studies have characterized the capacity of Mn(III/IV) oxides to oxidize Cr(III) to toxic Cr(VI), the oxidative capacity of Mn oxides in the presence of potentially passivating soil constituents, specifically reduced soluble iron (Fe(II)aq), remains unresolved. We hypothesized that chemical processes at redox interfaces, such as diffusion-limited environments within soil aggregates, can lead to decreased …


Volcanic Diffuse Volatile Emissions Tracked By Plant Responses Detectable From Space, Robert R. Bogue, Peter M. J. Douglas, Joshua B. Fisher, John Stix Nov 2023

Volcanic Diffuse Volatile Emissions Tracked By Plant Responses Detectable From Space, Robert R. Bogue, Peter M. J. Douglas, Joshua B. Fisher, John Stix

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Volcanic volatile emissions provide information about volcanic unrest but are difficult to detect with satellites. Volcanic degassing affects plants by elevating local CO2 and H2O concentrations, which may increase photosynthesis. Satellites can detect plant health, or a reaction to photosynthesis, through a Normalized Difference Vegetation Index (NDVI). This can act as a potential proxy for detecting changes in volcanic volatile emissions from space. We tested this method by analyzing 185 Landsat 5 and 8 images of the Tern Lake thermal area (TLTA) in northeast Yellowstone caldera from 1984 to 2022. We compared the NDVI values of the thermal area with …


Causes And Effects Of Shisper Glacial Lake Outburst Flood Event In Karakoram In 2022, Sandeep Kumar Mondal, Vatsal D. Patel, Rishikesh Bharti, Ramesh P. Singh Oct 2023

Causes And Effects Of Shisper Glacial Lake Outburst Flood Event In Karakoram In 2022, Sandeep Kumar Mondal, Vatsal D. Patel, Rishikesh Bharti, Ramesh P. Singh

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Karakoram Himalayas are vulnerable to glacial lake outburst floods (GLOFs), which cause catastrophic floods in the surrounding areas. The increasing natural and anthropogenic activities, especially in the Indo-Gangetic Plains at the southern flank of the towering Himalayas, could be the cause of climate change affecting the frequency of the natural hazards in the Himalayas. In the present study, a detailed analysis of the Shisper Lake breach of 7 May 2022 is carried out using satellite remote sensing. A decreasing trend in the glacial mass balance is observed between 2017 and 2021; in this period, frequent GLOF episodes occurred. A pronounced …


Small Community Water Systems Have The Highest Prevalence Of Mn In Drinking Water In California, Usa, Miranda Aiken, Samantha C. Ying May 2023

Small Community Water Systems Have The Highest Prevalence Of Mn In Drinking Water In California, Usa, Miranda Aiken, Samantha C. Ying

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Manganese (Mn) is currently regulated as a secondary contaminant in California, USA; however, recent revisions of the World Health Organization drinking water guidelines have increased regulatory attention of Mn in drinking water due to increasing reports of neurotoxic effects in infants and children. In this study, Mn concentrations reported to California’s Safe Drinking Water Information System were used to estimate the potentially exposed population within California based on system size. We estimate that between 2011 and 2021, over 525,000 users in areas with reported Mn data are potentially exposed to Mn concentrations exceeding the WHO health-based guideline (80 μg L …


Dynamic And Thermodynamic Influences On Precipitation In Northeast Mexico On Orbital To Millennial Timescales, Kevin T. Wright, Kathleen R. Johnson, Gabriela Serrato Marks, David Mcgee, Tripti Bhattacharya, Gregory R. Goldsmith, Clay R. Tabor, Jean-Louis Lacaille-Muzquiz, Gianna Lum, Laura Beramendi-Orosco Apr 2023

Dynamic And Thermodynamic Influences On Precipitation In Northeast Mexico On Orbital To Millennial Timescales, Kevin T. Wright, Kathleen R. Johnson, Gabriela Serrato Marks, David Mcgee, Tripti Bhattacharya, Gregory R. Goldsmith, Clay R. Tabor, Jean-Louis Lacaille-Muzquiz, Gianna Lum, Laura Beramendi-Orosco

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The timing and mechanisms of past hydroclimate change in northeast Mexico are poorly constrained, limiting our ability to evaluate climate model performance. To address this, we present a multiproxy speleothem record of past hydroclimate variability spanning 62.5 to 5.1 ka from Tamaulipas, Mexico. Here we show a strong influence of Atlantic and Pacific sea surface temperatures on orbital and millennial scale precipitation changes in the region. Multiple proxies show no clear response to insolation forcing, but strong evidence for dry conditions during Heinrich Stadials. While these trends are consistent with other records from across Mesoamerica and the Caribbean, the relative …


Rapid Bacterial And Fungal Successional Dynamics In First Year After Chaparral Wildfire, M. Fabiola Pulido-Chavez, James W. J. Randolph, Cassandra A. Zalman, Loralee Larios, Peter M. Homyak, Sydney I. Glassman Dec 2022

Rapid Bacterial And Fungal Successional Dynamics In First Year After Chaparral Wildfire, M. Fabiola Pulido-Chavez, James W. J. Randolph, Cassandra A. Zalman, Loralee Larios, Peter M. Homyak, Sydney I. Glassman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The rise in wildfire frequency and severity across the globe has increased interest in secondary succession. However, despite the role of soil microbial communities in controlling biogeochemical cycling and their role in the regeneration of post-fire vegetation, the lack of measurements immediately post-fire and at high temporal resolution has limited understanding of microbial secondary succession. To fill this knowledge gap, we sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days after a southern California wildfire in fire-adapted chaparral shrublands. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition …


Future Colorado River Basin Drought And Surplus, Rama Bedri, Thomas Piechota Dec 2022

Future Colorado River Basin Drought And Surplus, Rama Bedri, Thomas Piechota

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Historical and future drought and surplus periods in the Colorado River basin are evaluated based on eight climate scenarios. Unimpaired streamflow from 17 stations in the Colorado River are evaluated based on U.S. Geological Survey, Bureau of Reclamation, and Coupled Modeled Intercomparison Projection 5 downscaled data from 1950–2099. Representative Concentration Pathway (RCP) 4.5 and 8.5 emission scenarios are considered for four climate models (HadGEM2-ES, CNRM-CM5, CanESM2, MI-ROC5). Drought (surplus) quantities, magnitudes, severities, and water year flows are compared for the historical and future periods. Results indicate that there is a significant difference between the historical record and future projections. The …


Increased Aerosols Can Reverse Twomey Effect In Water Clouds Through Radiative Pathway, Pradeep Khatri, Tadahiro Hayasaka, Brent N. Holben, Ramesh P. Singh, Husi Letu, Sachchida N. Tripathi Nov 2022

Increased Aerosols Can Reverse Twomey Effect In Water Clouds Through Radiative Pathway, Pradeep Khatri, Tadahiro Hayasaka, Brent N. Holben, Ramesh P. Singh, Husi Letu, Sachchida N. Tripathi

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aerosols play important roles in modulations of cloud properties and hydrological cycle by decreasing the size of cloud droplets with the increase of aerosols under the condition of fixed liquid water path, which is known as the first aerosol indirect effect or Twomey-effect or microphysical effect. Using high-quality aerosol data from surface observations and statistically decoupling the influence of meteorological factors, we show that highly loaded aerosols can counter this microphysical effect through the radiative effect to result both the decrease and increase of cloud droplet size depending on liquid water path in water clouds. The radiative effect due to …


Technical Note: On Uncertainties In Plant Water Isotopic Composition Following Extraction By Cryogenic Vacuum Distillation, Haoyu Diao, Philipp Schuler, Gregory R. Goldsmith, Rolf T. W. Siegwolf, Matthias Saurer, Marco M. Lehmann Nov 2022

Technical Note: On Uncertainties In Plant Water Isotopic Composition Following Extraction By Cryogenic Vacuum Distillation, Haoyu Diao, Philipp Schuler, Gregory R. Goldsmith, Rolf T. W. Siegwolf, Matthias Saurer, Marco M. Lehmann

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Recent studies have challenged the interpretation of plant water isotopes obtained through cryogenic vacuum distillation (CVD) based on observations of a large 2H fractionation. These studies have hypothesized the existence of an H-atom exchange between water and organic tissue during CVD extraction with the magnitude of H exchange related to relative water content of the sample; however, clear evidence is lacking. Here, we systematically tested the uncertainties in the isotopic composition of CVD-extracted water by conducting a series of incubation and rehydration experiments using isotopically depleted water, water at natural isotope abundance, woody materials with exchangeable H, and organic materials …


Response Of Surface And Atmospheric Parameters Associated With The Iran M 7.3 Earthquake, Feng Jing, Ramesh P. Singh Jul 2022

Response Of Surface And Atmospheric Parameters Associated With The Iran M 7.3 Earthquake, Feng Jing, Ramesh P. Singh

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Multiparameter observed from satellite, including microwave brightness temperature, skin temperature, air temperature, and carbon monoxide, have been analyzed to identify the anomalous signals associated with the M 7.3 Iran earthquake of November 12, 2017. Besides removing the multiyear variability of parameters as background, the effect of surface and atmosphere of a dust storm event in Middle East region during October 29–November 1 is considered to distinguish the possible anomalies associated with the earthquake. The characteristic behaviors of surface and atmospheric parameters clearly show the signals associated with the M 7.3 earthquake and the dust storm event. The multiple parameters at …


Pronounced Changes In Thermal Signals Associated With The Madoi (China) M 7.3 Earthquake From Passive Microwave And Infrared Satellite Data, Feng Jing, Lu Zhang, Ramesh P. Singh May 2022

Pronounced Changes In Thermal Signals Associated With The Madoi (China) M 7.3 Earthquake From Passive Microwave And Infrared Satellite Data, Feng Jing, Lu Zhang, Ramesh P. Singh

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Thermal variations in surface and atmosphere observed from multiple satellites prior to strong earthquakes have been widely reported ever since seismic thermal anomalies were discovered three decades ago. These thermal changes are related to stress accumulation caused by the tectonic activities in the final stage of earthquake preparation. In the present paper, we focused on the thermal changes associated with the 2021 Madoi M 7.3 earthquake in China and analyzed the temporal and spatial evolution of the Index of Microwave Radiation Anomaly (IMRA) and the Index of Longwave Radiation Anomaly (ILRA) based on 8-year microwave brightness temperature (MWBT) and 14-year …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations …


Landslide Detection In The Himalayas Using Machine Learning Algorithms And U-Net, Sansar Raj Meena, Lucas Pedrosa Soares, Carlos H. Grohmann, Cees Van Westen, Kushanav Bhuyan, Ramesh P. Singh, Mario Floris, Filippo Catani Feb 2022

Landslide Detection In The Himalayas Using Machine Learning Algorithms And U-Net, Sansar Raj Meena, Lucas Pedrosa Soares, Carlos H. Grohmann, Cees Van Westen, Kushanav Bhuyan, Ramesh P. Singh, Mario Floris, Filippo Catani

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Event-based landslide inventories are essential sources to broaden our understanding of the causal relationship between triggering events and the occurring landslides. Moreover, detailed inventories are crucial for the succeeding phases of landslide risk studies like susceptibility and hazard assessment. The openly available inventories differ in the quality and completeness levels. Event-based landslide inventories are created based on manual interpretation, and there can be significant differences in the mapping preferences among interpreters. To address this issue, we used two different datasets to analyze the potential of U-Net and machine learning approaches for automated landslide detection in the Himalayas. Dataset-1 is composed …


Catastrophic Ice-Debris Flow In The Rishiganga River, Chamoli, Uttarakhand (India), Vijendra Kumar Pandey, Rajesh Kumar, Rupendra Singh, Rajesh Kumar, Suresh Chand Rai, Ramesh P. Singh, Arun Kumar Tripathi, Vijay Kumar Soni, S. Nawaz Ali, Dakshina Tamang, Syed Umer Latief Jan 2022

Catastrophic Ice-Debris Flow In The Rishiganga River, Chamoli, Uttarakhand (India), Vijendra Kumar Pandey, Rajesh Kumar, Rupendra Singh, Rajesh Kumar, Suresh Chand Rai, Ramesh P. Singh, Arun Kumar Tripathi, Vijay Kumar Soni, S. Nawaz Ali, Dakshina Tamang, Syed Umer Latief

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A catastrophic flood occurred on 7 February 2021 around 10:30 AM (local time) in the Rishiganga River, which has been attributed to a rockslide in the upper reach of the Raunthi River. The Resourcesat 2 LISS IV (8 February 2021) and CNES Airbus satellite imagery (9 February 2021) clearly show the location of displaced materials. The solar radiation observed was higher than normal by 10% and 25% on 6 and 7 February 2021, respectively, however, the temperature shows up to 34% changes. These conditions are responsible for the sudden change in instability in glacier blocks causing deadly rock-ice slides that …


Dynamic Relationship Study Between The Observed Seismicity And Spatiotemporal Pattern Of Lineament Changes In Palghar, North Maharashtra (India), Biswajit Nath, Ramesh P. Singh, Vineet K. Gahalaut, Ajay P. Singh Dec 2021

Dynamic Relationship Study Between The Observed Seismicity And Spatiotemporal Pattern Of Lineament Changes In Palghar, North Maharashtra (India), Biswajit Nath, Ramesh P. Singh, Vineet K. Gahalaut, Ajay P. Singh

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The Palghar region (north Maharashtra, India), located in the northwestern part of the stable continental region of India, experienced a low magnitude earthquake swarm, which was initiated in September 2018 and is continuing to date (as of October 2021). From December 2018 to December 2020, ~5000 earthquakes with magnitudes from M1.2 to M3.8 occurred in a small region of 20 × 10 km2. These earthquakes were probably triggered by fluid migration during seasonal rainfall. In this study, we have used multi-temporal Landsat satellite data of the year 2000, 2015, 2018, 2019, and 2020, extracted lineaments, and studied the …


Progressive Destabilization And Triggering Mechanism Analysis Using Multiple Data For Chamoli Rockslide Of 7 February 2021, Wenfei Mao, Lixin Wu, Ramesh P. Singh, Yuan Qi, Busheng Xie, Yingjia Liu, Yifan Ding, Zilong Zhou, Jia Li Dec 2021

Progressive Destabilization And Triggering Mechanism Analysis Using Multiple Data For Chamoli Rockslide Of 7 February 2021, Wenfei Mao, Lixin Wu, Ramesh P. Singh, Yuan Qi, Busheng Xie, Yingjia Liu, Yifan Ding, Zilong Zhou, Jia Li

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A catastrophic rockslide occurred on 7 February 2021 in Chamoli area in the high Himalaya. In the absence of field data, multiple satellites data of decade span have been used to investigate and understand the progressive destabilization of rockslide body. A 3D geometric model was developed using geospatial information about geology, terrain, and ice cover to understand the triggering mechanism. Several causes are uncovered as: the pronounced long-term change of land surface temperature facilitated local permafrost degradation and led to ice cover shrinking since 2010; the occurrence of ice avalanche nearby in 2016 accompanying with sidewall-to-bedrock fracturing enhanced the ice …


Atlantic Ocean Variability And European Alps Winter Precipitation, Giuseppe Formetta, Jonghun Kam, Sahar Sadeghi, Glenn Tootle, Thomas Piechota Nov 2021

Atlantic Ocean Variability And European Alps Winter Precipitation, Giuseppe Formetta, Jonghun Kam, Sahar Sadeghi, Glenn Tootle, Thomas Piechota

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Winter precipitation (snowpack) in the European Alps provides a critical source of freshwater to major river basins such as the Danube, Rhine, and Po. Previous research identified Atlantic Ocean variability and hydrologic responses in the European Alps. The research presented here evaluates Atlantic Sea Surface Temperatures (SSTs) and European Alps winter precipitation variability using Singular Value Decomposition. Regions in the north and mid-Atlantic from the SSTs were identified as being tele-connected with winter precipitation in the European Alps. Indices were generated for these Atlantic SST regions to use in prediction of precipitation. Regression and non-parametric models were developed using the …


Hydrological Feedbacks On Peatland Ch4 Emission Under Warming And Elevated Co2: A Modeling Study, Fenghui Yuan, Yihui Wang, Daniel M. Ricciuto, Xiaoying Shi, Fengming Yuan, Thomas Brehme, Scott Bridgham, Jason Keller, Jeffrey M. Warren, Natalie A. Griffiths, Stephen D. Sebestyen, Paul J. Hanson, Peter E. Thornton, Xiaofeng Xu Nov 2021

Hydrological Feedbacks On Peatland Ch4 Emission Under Warming And Elevated Co2: A Modeling Study, Fenghui Yuan, Yihui Wang, Daniel M. Ricciuto, Xiaoying Shi, Fengming Yuan, Thomas Brehme, Scott Bridgham, Jason Keller, Jeffrey M. Warren, Natalie A. Griffiths, Stephen D. Sebestyen, Paul J. Hanson, Peter E. Thornton, Xiaofeng Xu

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatland carbon cycling is critical for the land–atmosphere exchange of greenhouse gases, particularly under changing environments. Warming and elevated atmospheric carbon dioxide (eCO2) concentrations directly enhance peatland methane (CH4) emission, and indirectly affect CH4 processes by altering hydrological conditions. An ecosystem model ELM-SPRUCE, the land model of the E3SM model, was used to understand the hydrological feedback mechanisms on CH4 emission in a temperate peatland under a warming gradient and eCO2 treatments. We found that the water table level was a critical regulator of hydrological feedbacks that affect peatland CH4 dynamics; the …


Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature In A Whole Ecosystem Warming Experiment, Rachel M. Wilson, Natalie A. Griffiths, Ate Visser, Karis J. Mcfarlane, Stephen D. Sebestyen, Keith C. Oleheiser, Samantha Bosman, Anya M. Hopple, Malak M. Tfaily, Randall K. Kolka, Paul J. Hanson, Joel E. Kostka, Scott D. Bridgham, Jason K. Keller, Jeffrey P. Chanton Oct 2021

Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature In A Whole Ecosystem Warming Experiment, Rachel M. Wilson, Natalie A. Griffiths, Ate Visser, Karis J. Mcfarlane, Stephen D. Sebestyen, Keith C. Oleheiser, Samantha Bosman, Anya M. Hopple, Malak M. Tfaily, Randall K. Kolka, Paul J. Hanson, Joel E. Kostka, Scott D. Bridgham, Jason K. Keller, Jeffrey P. Chanton

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem-scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m-deep in a peat bog over a 7-year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7-year trend …


Underground Burning Of Jharia Coal Mine (India) And Associated Surface Deformation Using Insar Data, Jungrack Kim, Shih-Yuan Lin, Ramesh P. Singh, Chen-Wei Lan, Hye-Won Yun Sep 2021

Underground Burning Of Jharia Coal Mine (India) And Associated Surface Deformation Using Insar Data, Jungrack Kim, Shih-Yuan Lin, Ramesh P. Singh, Chen-Wei Lan, Hye-Won Yun

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The underground burning in the Jharia coal mine (JCM) in India is a highly devastating environmental hazard inducing various adverse consequences. In the present study, we carried out time series analyses based on Interferometric Synthetic Aperture Radar (InSAR) and land surface temperature (LST) to study the environmental risk. First, a permanent scatterer (PS) time series analysis using Sentinel-1 images over three years was performed to detect the spatio-temporal distribution of ground deformation. Comparison of ground thermal anomaly clearly delineated the subsidence spots associated with the oxygen supply to combustion areas. On the contrary, few deformations were mapped showing pronounced uplift …


Chamoli Disaster: Pronounced Changes In Water Quality And Flood Plains Using Sentinel Data, Sansar Raj Meena, Akshansa Chauhan, Kushanav Bhuyan, Ramesh P. Singh Aug 2021

Chamoli Disaster: Pronounced Changes In Water Quality And Flood Plains Using Sentinel Data, Sansar Raj Meena, Akshansa Chauhan, Kushanav Bhuyan, Ramesh P. Singh

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The Himalayan rivers are vulnerable to devastating flooding caused by landslides and outbreak of glacial lakes. On 7 February 2021, a deadly disaster occurred near the Rishi Ganga Hydropower Plant in the Rishi Ganga River, killing more than 100 people. During the event, a large volume of debris and broken glacial fragments flooded the Rishi Ganga River and washed away the Rishi Ganga Hydropower plant ongoing project. This study presents the impact of the Chamoli disaster on the water quality of Rishi Ganga River in upstream near Tapovan and Ganga River in downstream near Haridwar through remote sensing data. Five …


An Integrative Model For Soil Biogeochemistry And Methane Processes: I. Model Structure And Sensitivity Analysis, Daniel M. Ricciuto, Xiaofeng Xu, Xiaoying Shi, Yihui Wang, Xia Song, Christopher W. Schadt, Natalie A. Griffiths, Jiafu Mao, Jeffrey M. Warren, Peter E. Thornton, Jeff Chanton, Jason K. Keller, Scott D. Bridgham, Jessica Gutknecht, Stephen D. Sebestyen, Adrien Finzi, Randall Kolka, Paul J. Hanson Jul 2021

An Integrative Model For Soil Biogeochemistry And Methane Processes: I. Model Structure And Sensitivity Analysis, Daniel M. Ricciuto, Xiaofeng Xu, Xiaoying Shi, Yihui Wang, Xia Song, Christopher W. Schadt, Natalie A. Griffiths, Jiafu Mao, Jeffrey M. Warren, Peter E. Thornton, Jeff Chanton, Jason K. Keller, Scott D. Bridgham, Jessica Gutknecht, Stephen D. Sebestyen, Adrien Finzi, Randall Kolka, Paul J. Hanson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Environmental changes are anticipated to generate substantial impacts on carbon cycling in peatlands, affecting terrestrial-climate feedbacks. Understanding how peatland methane (CH4) fluxes respond to these changing environments is critical for predicting the magnitude of feedbacks from peatlands to global climate change. To improve predictions of CH4 fluxes in response to changes such as elevated atmospheric CO2 concentrations and warming, it is essential for Earth system models to include increased realism to simulate CH4 processes in a more mechanistic way. To address this need, we incorporated a new microbial-functional group-based CH4 module into the Energy …


Snow Covered With Dust After Chamoli Rockslide: Inference Based On High-Resolution Satellite Data, Sansar Raj Meena, Kushanav Bhuyan, Akshansha Chauhan, Ramesh P. Singh Jun 2021

Snow Covered With Dust After Chamoli Rockslide: Inference Based On High-Resolution Satellite Data, Sansar Raj Meena, Kushanav Bhuyan, Akshansha Chauhan, Ramesh P. Singh

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The high-resolution multi-temporal PlanetScope image of 7 February 2021 clearly shows the fall of a large part of the Nanda Ghunti glacier (Uttarakhand) down in the base of the valley from a height of about 2000 m. The recorded seismic signals at the local seismic networks, close to the Joshimath station, show the occurrence of the fall of the first glacier block followed by another block which corresponds to the seismic signal recorded the second time. The timings of signals recorded from the seismic station are related to the visual sign of local dust in the valley after the fall …


Changes In Tropospheric Ozone Associated With Strong Earthquakes And Possible Mechanism, Feng Jing, Ramesh P. Singh May 2021

Changes In Tropospheric Ozone Associated With Strong Earthquakes And Possible Mechanism, Feng Jing, Ramesh P. Singh

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The index of ozone anomaly (IOA) has been proposed to detect changes in tropospheric ozone associated with strong earthquakes. The tropospheric ozone prior and after the 2008 Wenchuan earthquake has been analyzed using IOA. Atmospheric infrared sounder ozone volume mixing ratio (O3 VMR) at different pressure levels (600, 500, 400, 300, 200 hPa) for an 18-year period 2003–2020 has been considered to identify the unique behavior associated with the strong earthquakes. Our results show distinct enhancement in tropospheric ozone occurred 5 d (7 May 2008) prior to the main event and distributed along the Longmenshan fault zone. An enhancement in …


Carbon Fluxes And Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw, M. P. Waldrop, J. W. Mcfarland, K. L. Manies, M. C. Leewis, S. J. Blazewicz, M. C. Jones, R. B. Neumann, Jason K. Keller, L. Cohen, E. S. Euskirchen, C. Edgar, M. R. Turetsky, W. L. Cable Feb 2021

Carbon Fluxes And Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw, M. P. Waldrop, J. W. Mcfarland, K. L. Manies, M. C. Leewis, S. J. Blazewicz, M. C. Jones, R. B. Neumann, Jason K. Keller, L. Cohen, E. S. Euskirchen, C. Edgar, M. R. Turetsky, W. L. Cable

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Permafrost thaw in northern ecosystems may cause large quantities of carbon (C) to move from soil to atmospheric pools. Because soil microbial communities play a critical role in regulating C fluxes from soils, we examined microbial activity and greenhouse gas production soon after permafrost thaw and ground collapse (into collapse‐scar bogs), relative to the permafrost plateau or older thaw features. Using multiple field and laboratory‐based assays at a field site in interior Alaska, we show that the youngest collapse‐scar bog had the highest CH4 production potential from soil incubations, and, based upon temporal changes in porewater concentrations and 13 …


Rapid Mapping Of Landslides In The Western Ghats (India) Triggered By 2018 Extreme Monsoon Rainfall Using A Deep Learning Approach, Sansar Raj Meena, Omid Ghorbanzadeh, Cees J. Van Westen, Thimmaiah Gudiyangada Nachappa, Thomas Blaschke, Ramesh P. Singh, Raju Sarkar Jan 2021

Rapid Mapping Of Landslides In The Western Ghats (India) Triggered By 2018 Extreme Monsoon Rainfall Using A Deep Learning Approach, Sansar Raj Meena, Omid Ghorbanzadeh, Cees J. Van Westen, Thimmaiah Gudiyangada Nachappa, Thomas Blaschke, Ramesh P. Singh, Raju Sarkar

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Rainfall-induced landslide inventories can be compiled using remote sensing and topographical data, gathered using either traditional or semi-automatic supervised methods. In this study, we used the PlanetScope imagery and deep learning convolution neural networks (CNNs) to map the 2018 rainfall-induced landslides in the Kodagu district of Karnataka state in theWestern Ghats of India.We used a fourfold cross-validation (CV) to select the training and testing data to remove any random results of the model. Topographic slope data was used as auxiliary information to increase the performance of the model. The resulting landslide inventory map, created using the slope data with the …


Modeling Holocene Peatland Carbon Accumulation In North America, Qianlai Zhuang, Sirui Wang, Bailu Zhao, Filipe Aires, Catherine Prigent, Zicheng Yu, Jason K. Keller, Scott Bridgham Nov 2020

Modeling Holocene Peatland Carbon Accumulation In North America, Qianlai Zhuang, Sirui Wang, Bailu Zhao, Filipe Aires, Catherine Prigent, Zicheng Yu, Jason K. Keller, Scott Bridgham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands are a large carbon reservoir. Yet the quantification of their carbon stock still has a large uncertainty due to lacking observational data and well‐tested peatland biogeochemistry models. Here, a process‐based peatland model was calibrated using long‐term peat carbon accumulation data at multiple sites in North America. The model was then applied to quantify the peat carbon accumulation rates and stocks within North America over the last 12,000 years. We estimated that 85–174 Pg carbon was accumulated in North American peatlands over the study period including 0.37–0.76 Pg carbon in subtropical peatlands. During the period from 10,000 to 8,000 years …