Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Artificial Intelligence and Robotics

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari Jan 2024

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …


Automatic Hemorrhage Segmentation In Brain Ct Scans Using Curriculum-Based Semi-Supervised Learning, Solayman H. Emon, Tzu-Liang (Bill) Tseng, Michael Pokojovy, Peter Mccaffrey, Scott Moen, Md Fashiar Rahman Jan 2024

Automatic Hemorrhage Segmentation In Brain Ct Scans Using Curriculum-Based Semi-Supervised Learning, Solayman H. Emon, Tzu-Liang (Bill) Tseng, Michael Pokojovy, Peter Mccaffrey, Scott Moen, Md Fashiar Rahman

Mathematics & Statistics Faculty Publications

One of the major neuropathological consequences of traumatic brain injury (TBI) is intracranial hemorrhage (ICH), which requires swift diagnosis to avert perilous outcomes. We present a new automatic hemorrhage segmentation technique via curriculum-based semi-supervised learning. It employs a pre-trained lightweight encoder-decoder framework (MobileNetV2) on labeled and unlabeled data. The model integrates consistency regularization for improved generalization, offering steady predictions from original and augmented versions of unlabeled data. The training procedure employs curriculum learning to progressively train the model at diverse complexity levels. We utilize the PhysioNet dataset to train and evaluate the proposed approach. The performance results surpass those of …


Real-Time Hierarchical Map Segmentation For Coordinating Multi-Robot Exploration, Tianze Luo, Zichen Chen, Budhitama Subagdja, Ah-Hwee Tan Feb 2023

Real-Time Hierarchical Map Segmentation For Coordinating Multi-Robot Exploration, Tianze Luo, Zichen Chen, Budhitama Subagdja, Ah-Hwee Tan

Research Collection School Of Computing and Information Systems

Coordinating a team of autonomous agents to explore an environment can be done by partitioning the map of the environment into segments and allocating the segments as targets for the individual agents to visit. However, given an unknown environment, map segmentation must be conducted in a continuous and incremental manner. In this paper, we propose a novel real-time hierarchical map segmentation method for supporting multi-agent exploration of indoor environments, wherein clusters of regions of segments are formed hierarchically from randomly sampled points in the environment. Each cluster is then assigned with a cost-utility value based on the minimum cost possible …


Class Activation Mapping And Uncertainty Estimation In Multi-Organ Segmentation, Md. Shibly Sadique, Walia Farzana, Ahmed Temtam, Khan Iftekharuddin, Khan Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Class Activation Mapping And Uncertainty Estimation In Multi-Organ Segmentation, Md. Shibly Sadique, Walia Farzana, Ahmed Temtam, Khan Iftekharuddin, Khan Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

Deep learning (DL)-based medical imaging and image segmentation algorithms achieve impressive performance on many benchmarks. Yet the efficacy of deep learning methods for future clinical applications may become questionable due to the lack of ability to reason with uncertainty and interpret probable areas of failures in prediction decisions. Therefore, it is desired that such a deep learning model for segmentation classification is able to reliably predict its confidence measure and map back to the original imaging cases to interpret the prediction decisions. In this work, uncertainty estimation for multiorgan segmentation task is evaluated to interpret the predictive modeling in DL …


A High-Accuracy Detection System: Based On Transfer Learning For Apical Lesions On Periapical Radiograph, Yueh Chuo, Wen-Ming Lin, Tsung-Yi Chen, Mei-Ling Chan, Yu-Sung Chang, Yan-Ru Lin, Yuan-Jin Lin, Yu-Han Shao, Chiung-An Chen, Patricia Angela R. Abu Dec 2022

A High-Accuracy Detection System: Based On Transfer Learning For Apical Lesions On Periapical Radiograph, Yueh Chuo, Wen-Ming Lin, Tsung-Yi Chen, Mei-Ling Chan, Yu-Sung Chang, Yan-Ru Lin, Yuan-Jin Lin, Yu-Han Shao, Chiung-An Chen, Patricia Angela R. Abu

Department of Information Systems & Computer Science Faculty Publications

Apical Lesions, one of the most common oral diseases, can be effectively detected in daily dental examinations by a periapical radiograph (PA). In the current popular endodontic treatment, most dentists spend a lot of time manually marking the lesion area. In order to reduce the burden on dentists, this paper proposes a convolutional neural network (CNN)-based regional analysis model for spical lesions for periapical radiographs. In this study, the database was provided by dentists with more than three years of practical experience, meeting the criteria for clinical practical application. The contributions of this work are (1) an advanced adaptive threshold …


Visual Object Tracking With Discriminative Filters And Siamese Networks: A Survey And Outlook, Sajid Javed, Martin Danelljan, Fahad Shahbaz Khan, Muhammad Haris Khan, Michael Felsberg, Jiri Matas Oct 2022

Visual Object Tracking With Discriminative Filters And Siamese Networks: A Survey And Outlook, Sajid Javed, Martin Danelljan, Fahad Shahbaz Khan, Muhammad Haris Khan, Michael Felsberg, Jiri Matas

Computer Vision Faculty Publications

Accurate and robust visual object tracking is one of the most challenging and fundamental computer vision problems. It entails estimating the trajectory of the target in an image sequence, given only its initial location, and segmentation, or its rough approximation in the form of a bounding box. Discriminative Correlation Filters (DCFs) and deep Siamese Networks (SNs) have emerged as dominating tracking paradigms, which have led to significant progress. Following the rapid evolution of visual object tracking in the last decade, this survey presents a systematic and thorough review of more than 90 DCFs and Siamese trackers, based on results in …


Adversarial Pixel Restoration As A Pretext Task For Transferable Perturbations, Hashmat Shadab Malik, Shahina K. Kunhimon, Muzammal Nasser, Salman Khan, Fahad Shahbaz Khan Jul 2022

Adversarial Pixel Restoration As A Pretext Task For Transferable Perturbations, Hashmat Shadab Malik, Shahina K. Kunhimon, Muzammal Nasser, Salman Khan, Fahad Shahbaz Khan

Computer Vision Faculty Publications

Transferable adversarial attacks optimize adversaries from a pretrained surrogate model and known label space to fool the unknown black-box models. Therefore, these attacks are restricted by the availability of an effective surrogate model. In this work, we relax this assumption and propose Adversarial Pixel Restoration as a self-supervised alternative to train an effective surrogate model from scratch under the condition of no labels and few data samples. Our training approach is based on a min-max objective which reduces overfitting via an adversarial objective and thus optimizes for a more generalizable surrogate model. Our proposed attack is complimentary to our adversarial …


Segmentation With Super Images: A New 2d Perspective On 3d Medical Image Analysis, Ikboljon Sobirov, Numan Saeed, Mohammad Yaqub May 2022

Segmentation With Super Images: A New 2d Perspective On 3d Medical Image Analysis, Ikboljon Sobirov, Numan Saeed, Mohammad Yaqub

Computer Vision Faculty Publications

Deep learning is showing an increasing number of audience in medical imaging research. In the segmentation task of medical images, we oftentimes rely on volumetric data, and thus require the use of 3D architectures which are praised for their ability to capture more features from the depth dimension. Yet, these architectures are generally more ineffective in time and compute compared to their 2D counterpart on account of 3D convolutions, max pooling, up-convolutions, and other operations used in these networks. Moreover, there are limited to no 3D pretrained model weights, and pretraining is generally challenging. To alleviate these issues, we propose …


Self-Supervised Video Object Segmentation Via Cutout Prediction And Tagging, Jyoti Kini, Fahad Shahbaz Khan, Salman Khan, Mubarak Shah Apr 2022

Self-Supervised Video Object Segmentation Via Cutout Prediction And Tagging, Jyoti Kini, Fahad Shahbaz Khan, Salman Khan, Mubarak Shah

Computer Vision Faculty Publications

We propose a novel self-supervised Video Object Segmentation (VOS) approach that strives to achieve better object-background discriminability for accurate object segmentation. Distinct from previous self-supervised VOS methods, our approach is based on a discriminative learning loss formulation that takes into account both object and background information to ensure object-background discriminability, rather than using only object appearance. The discriminative learning loss comprises cutout-based reconstruction (cutout region represents part of a frame, whose pixels are replaced with some constant values) and tag prediction loss terms. The cutout-based reconstruction term utilizes a simple cutout scheme to learn the pixel-wise correspondence between the current …


Deep Learning Techniques For Diabetic Retinopathy Classification: A Survey, Mohammad Z. Atwany, Abdulwahab H. Sahyoun, Mohammad Yaqub Mar 2022

Deep Learning Techniques For Diabetic Retinopathy Classification: A Survey, Mohammad Z. Atwany, Abdulwahab H. Sahyoun, Mohammad Yaqub

Computer Vision Faculty Publications

Diabetic Retinopathy (DR) is a degenerative disease that impacts the eyes and is a consequence of Diabetes mellitus, where high blood glucose levels induce lesions on the eye retina. Diabetic Retinopathy is regarded as the leading cause of blindness for diabetic patients, especially the working-age population in developing nations. Treatment involves sustaining the patient's current grade of vision since the disease is irreversible. Early detection of Diabetic Retinopathy is crucial in order to sustain the patient's vision effectively. The main issue involved with DR detection is that the manual diagnosis process is very time, money, and effort consuming and involves …


Transformers In Vision: A Survey, Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, Mubarak Shah Jan 2022

Transformers In Vision: A Survey, Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, Mubarak Shah

Computer Vision Faculty Publications

Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge …


Is Contrastive Learning Suitable For Left Ventricular Segmentation In Echocardiographic Images?, Mohamed Saeed, Rand Muhtaseb, Mohammad Yaqub Jan 2022

Is Contrastive Learning Suitable For Left Ventricular Segmentation In Echocardiographic Images?, Mohamed Saeed, Rand Muhtaseb, Mohammad Yaqub

Computer Vision Faculty Publications

Contrastive learning has proven useful in many applications where access to labelled data is limited. The lack of annotated data is particularly problematic in medical image segmenta-tion as it is difficult to have clinical experts manually annotate large volumes of data. One such task is the segmentation of cardiac structures in ultrasound images of the heart. In this paper, we argue whether or not contrastive pretraining is helpful for the segmentation of the left ventricle in echocardiography images. Furthermore, we study the effect of this on two segmentation networks, DeepLabV3, as well as the commonly used segmentation net-work, UNet. Our …


Ship Deck Segmentation In Engineering Document Using Generative Adversarial Networks, Mohammad Shahab Uddin, Raphael Pamie-George, Daron Wilkins, Andres Sousa Poza, Mustafa Canan, Samuel Kovacic, Jiang Li Jan 2021

Ship Deck Segmentation In Engineering Document Using Generative Adversarial Networks, Mohammad Shahab Uddin, Raphael Pamie-George, Daron Wilkins, Andres Sousa Poza, Mustafa Canan, Samuel Kovacic, Jiang Li

Engineering Management & Systems Engineering Faculty Publications

Generative adversarial networks (GANs) have become very popular in recent years. GANs have proved to be successful in different computer vision tasks including image-translation, image super-resolution etc. In this paper, we have used GAN models for ship deck segmentation. We have used 2D scanned raster images of ship decks provided by US Navy Military Sealift Command (MSC) to extract necessary information including ship walls, objects etc. Our segmentation results will be helpful to get vector and 3D image of a ship that can be later used for maintenance of the ship. We applied the trained models to engineering documents provided …


A Study Of Multi-Task And Region-Wise Deep Learning For Food Ingredient Recognition, Jingjing Chen, Bin Zhu, Chong-Wah Ngo, Tat-Seng Chua, Yu-Gang Jiang Dec 2020

A Study Of Multi-Task And Region-Wise Deep Learning For Food Ingredient Recognition, Jingjing Chen, Bin Zhu, Chong-Wah Ngo, Tat-Seng Chua, Yu-Gang Jiang

Research Collection School Of Computing and Information Systems

Food recognition has captured numerous research attention for its importance for health-related applications. The existing approaches mostly focus on the categorization of food according to dish names, while ignoring the underlying ingredient composition. In reality, two dishes with the same name do not necessarily share the exact list of ingredients. Therefore, the dishes under the same food category are not mandatorily equal in nutrition content. Nevertheless, due to limited datasets available with ingredient labels, the problem of ingredient recognition is often overlooked. Furthermore, as the number of ingredients is expected to be much less than the number of food categories, …


Deepfacade: A Deep Learning Approach To Facade Parsing, Hantang Liu, Jialiang Zhang, Jianke Zhu, Steven C. H. Hoi Aug 2017

Deepfacade: A Deep Learning Approach To Facade Parsing, Hantang Liu, Jialiang Zhang, Jianke Zhu, Steven C. H. Hoi

Research Collection School Of Computing and Information Systems

The parsing of building facades is a key component to the problem of 3D street scenes reconstruction, which is long desired in computer vision. In this paper, we propose a deep learning based method for segmenting a facade into semantic categories. Man-made structures often present the characteristic of symmetry. Based on this observation, we propose a symmetric regularizer for training the neural network. Our proposed method can make use of both the power of deep neural networks and the structure of man-made architectures. We also propose a method to refine the segmentation results using bounding boxes generated by the Region …


Deshadownet: A Multi-Context Embedding Deep Network For Shadow Removal, Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, Rynson W. H. Lau Jul 2017

Deshadownet: A Multi-Context Embedding Deep Network For Shadow Removal, Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, Rynson W. H. Lau

Research Collection School Of Computing and Information Systems

Shadow removal is a challenging task as it requires the detection/annotation of shadows as well as semantic understanding of the scene. In this paper, we propose an automatic and end-to-end deep neural network (DeshadowNet) to tackle these problems in a unified manner. DeshadowNet is designed with a multi-context architecture, where the output shadow matte is predicted by embedding information from three different perspectives. The first global network extracts shadow features from a global view. Two levels of features are derived from the global network and transferred to two parallel networks. While one extracts the appearance of the input image, the …


Directed Acyclic Graph Continuous Max-Flow Image Segmentation For Unconstrained Label Orderings, John Sh Baxter, Martin Rajchl, A. Jonathan Mcleod, Jing Yuan, Terry M. Peters Feb 2017

Directed Acyclic Graph Continuous Max-Flow Image Segmentation For Unconstrained Label Orderings, John Sh Baxter, Martin Rajchl, A. Jonathan Mcleod, Jing Yuan, Terry M. Peters

Robarts Imaging Publications

Label ordering, the specification of subset–superset relationships for segmentation labels, has been of increasing interest in image segmentation as they allow for complex regions to be represented as a collection of simple parts. Recent advances in continuous max-flow segmentation have widely expanded the possible label orderings from binary background/foreground problems to extendable frameworks in which the label ordering can be specified. This article presents Directed Acyclic Graph Max-Flow image segmentation which is flexible enough to incorporate any label ordering without constraints. This framework uses augmented Lagrangian multipliers and primal–dual optimization to develop a highly parallelized solver implemented using GPGPU. This …