Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Graphical models

2014

Articles 1 - 2 of 2

Full-Text Articles in Artificial Intelligence and Robotics

Causal Discovery For Relational Domains: Representation, Reasoning, And Learning, Marc Maier Nov 2014

Causal Discovery For Relational Domains: Representation, Reasoning, And Learning, Marc Maier

Doctoral Dissertations

Many domains are currently experiencing the growing trend to record and analyze massive, observational data sets with increasing complexity. A commonly made claim is that these data sets hold potential to transform their corresponding domains by providing previously unknown or unexpected explanations and enabling informed decision-making. However, only knowledge of the underlying causal generative process, as opposed to knowledge of associational patterns, can support such tasks. Most methods for traditional causal discovery—the development of algorithms that learn causal structure from observational data—are restricted to representations that require limiting assumptions on the form of the data. Causal discovery has almost exclusively …


Scaling Mcmc Inference And Belief Propagation To Large, Dense Graphical Models, Sameer Singh Aug 2014

Scaling Mcmc Inference And Belief Propagation To Large, Dense Graphical Models, Sameer Singh

Doctoral Dissertations

With the physical constraints of semiconductor-based electronics becoming increasingly limiting in the past decade, single-core CPUs have given way to multi-core and distributed computing platforms. At the same time, access to large data collections is progressively becoming commonplace due to the lowering cost of storage and bandwidth. Traditional machine learning paradigms that have been designed to operate sequentially on single processor architectures seem destined to become obsolete in this world of multi-core, multi-node systems and massive data sets. Inference for graphical models is one such example for which most existing algorithms are sequential in nature and are difficult to scale …