Open Access. Powered by Scholars. Published by Universities.®

University of Massachusetts Amherst

Causal discovery

Articles 1 - 2 of 2

Full-Text Articles in Artificial Intelligence and Robotics

Combinatorial Algorithms For Graph Discovery And Experimental Design, Raghavendra K. Addanki Oct 2022

Combinatorial Algorithms For Graph Discovery And Experimental Design, Raghavendra K. Addanki

Doctoral Dissertations

In this thesis, we study the design and analysis of algorithms for discovering the structure and properties of an unknown graph, with applications in two different domains: causal inference and sublinear graph algorithms. In both these domains, graph discovery is possible using restricted forms of experiments, and our objective is to design low-cost experiments. First, we describe efficient experimental approaches to the causal discovery problem, which in its simplest form, asks us to identify the causal relations (edges of the unknown graph) between variables (vertices of the unknown graph) of a given system. For causal discovery, we study algorithms …


Causal Discovery For Relational Domains: Representation, Reasoning, And Learning, Marc Maier Nov 2014

Causal Discovery For Relational Domains: Representation, Reasoning, And Learning, Marc Maier

Doctoral Dissertations

Many domains are currently experiencing the growing trend to record and analyze massive, observational data sets with increasing complexity. A commonly made claim is that these data sets hold potential to transform their corresponding domains by providing previously unknown or unexpected explanations and enabling informed decision-making. However, only knowledge of the underlying causal generative process, as opposed to knowledge of associational patterns, can support such tasks. Most methods for traditional causal discovery—the development of algorithms that learn causal structure from observational data—are restricted to representations that require limiting assumptions on the form of the data. Causal discovery has almost exclusively …