Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 51

Full-Text Articles in Artificial Intelligence and Robotics

Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu Mar 2024

Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu

Research Collection School Of Computing and Information Systems

Existing neural heuristics for multiobjective vehicle routing problems (MOVRPs) are primarily conditioned on instance context, which failed to appropriately exploit preference and problem size, thus holding back the performance. To thoroughly unleash the potential, we propose a novel conditional neural heuristic (CNH) that fully leverages the instance context, preference, and size with an encoder–decoder structured policy network. Particularly, in our CNH, we design a dual-attention-based encoder to relate preferences and instance contexts, so as to better capture their joint effect on approximating the exact Pareto front (PF). We also design a size-aware decoder based on the sinusoidal encoding to explicitly …


Quantifying Taxi Drivers' Behaviors With Behavioral Game Theory, Mengyu Ji, Yuhong Xu, Shih-Fen Cheng Sep 2023

Quantifying Taxi Drivers' Behaviors With Behavioral Game Theory, Mengyu Ji, Yuhong Xu, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

With their flexibility and convenience, taxis play a vital role in urban transportation systems. Understanding how human drivers make decisions in a context of uncertainty and competition is crucial for taxi fleets that depend on drivers to provide their services. As part of this paper, we propose modeling taxi drivers’ behaviors based on behavioral game theory. Based on real-world data, we demonstrate that the behavioral game theory model we select is superior to state-of-the-art baselines. These results provide a solid foundation for improving taxi fleet efficiency in the future.


Imitation Improvement Learning For Large-Scale Capacitated Vehicle Routing Problems, The Viet Bui, Tien Mai Jul 2023

Imitation Improvement Learning For Large-Scale Capacitated Vehicle Routing Problems, The Viet Bui, Tien Mai

Research Collection School Of Computing and Information Systems

Recent works using deep reinforcement learning (RL) to solve routing problems such as the capacitated vehicle routing problem (CVRP) have focused on improvement learning-based methods, which involve improving a given solution until it becomes near-optimal. Although adequate solutions can be achieved for small problem instances, their efficiency degrades for large-scale ones. In this work, we propose a newimprovement learning-based framework based on imitation learning where classical heuristics serve as experts to encourage the policy model to mimic and produce similar or better solutions. Moreover, to improve scalability, we propose Clockwise Clustering, a novel augmented framework for decomposing large-scale CVRP into …


Neighborhood Retail Amenities And Taxi Trip Behavior: A Natural Experiment In Singapore, Kwan Ok Lee, Shih-Fen Cheng Jan 2023

Neighborhood Retail Amenities And Taxi Trip Behavior: A Natural Experiment In Singapore, Kwan Ok Lee, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

While a small change in land use planning in existing neighborhoods may significantly reduce private vehicle trips, we do not have a great understanding of the magnitude of the project- and shock-based causal change in travel behaviors, especially for the retail purpose. We analyze the impact of newly developed malls on the retail trip behavior of nearby residents for shopping, dining or services. Using the difference-in-differences approach and big data from a major taxi company in Singapore, we find that households residing within 800 m from a new mall are significantly less likely to take taxis to other retail destinations …


Learning To Solve Multiple-Tsp With Time Window And Rejections Via Deep Reinforcement Learning, Rongkai Zhang, Cong Zhang, Zhiguang Cao, Wen Song, Puay Siew Tan, Jie Zhang, Bihan Wen, Justin Dauwels Sep 2022

Learning To Solve Multiple-Tsp With Time Window And Rejections Via Deep Reinforcement Learning, Rongkai Zhang, Cong Zhang, Zhiguang Cao, Wen Song, Puay Siew Tan, Jie Zhang, Bihan Wen, Justin Dauwels

Research Collection School Of Computing and Information Systems

We propose a manager-worker framework (the implementation of our model is publically available at: https://github.com/zcaicaros/manager-worker-mtsptwr) based on deep reinforcement learning to tackle a hard yet nontrivial variant of Travelling Salesman Problem (TSP), i.e. multiple-vehicle TSP with time window and rejections (mTSPTWR), where customers who cannot be served before the deadline are subject to rejections. Particularly, in the proposed framework, a manager agent learns to divide mTSPTWR into sub-routing tasks by assigning customers to each vehicle via a Graph Isomorphism Network (GIN) based policy network. A worker agent learns to solve sub-routing tasks by minimizing the cost in terms of both …


Hierarchical Value Decomposition For Effective On-Demand Ride Pooling, Hao Jiang, Pradeep Varakantham May 2022

Hierarchical Value Decomposition For Effective On-Demand Ride Pooling, Hao Jiang, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

On-demand ride-pooling (e.g., UberPool, GrabShare) services focus on serving multiple different customer requests using each vehicle, i.e., an empty or partially filled vehicle can be assigned requests from different passengers with different origins and destinations. On the other hand, in Taxi on Demand (ToD) services (e.g., UberX), one vehicle is assigned to only one request at a time. On-demand ride pooling is not only beneficial to customers (lower cost), drivers (higher revenue per trip) and aggregation companies (higher revenue), but is also of crucial importance to the environment as it reduces the number of vehicles required on the roads. Since …


Heterogeneous Attentions For Solving Pickup And Delivery Problem Via Deep Reinforcement Learning, Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, Jie Zhang Mar 2022

Heterogeneous Attentions For Solving Pickup And Delivery Problem Via Deep Reinforcement Learning, Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, Jie Zhang

Research Collection School Of Computing and Information Systems

Recently, there is an emerging trend to apply deep reinforcement learning to solve the vehicle routing problem (VRP), where a learnt policy governs the selection of next node for visiting. However, existing methods could not handle well the pairing and precedence relationships in the pickup and delivery problem (PDP), which is a representative variant of VRP. To address this challenging issue, we leverage a novel neural network integrated with a heterogeneous attention mechanism to empower the policy in deep reinforcement learning to automatically select the nodes. In particular, the heterogeneous attention mechanism specifically prescribes attentions for each role of the …


Fleet Sizing And Allocation For On-Demand Last-Mile Transportation Systems, Karmel Shehadeh, Hai Wang, Peter Zhang Nov 2021

Fleet Sizing And Allocation For On-Demand Last-Mile Transportation Systems, Karmel Shehadeh, Hai Wang, Peter Zhang

Research Collection School Of Computing and Information Systems

The last-mile problem refers to the provision of travel service from the nearest public transportation node to home or other destination. Last-Mile Transportation Systems (LMTS), which have recently emerged, provide on-demand shared transportation. In this paper, we investigate the fleet sizing and allocation problem for the on-demand LMTS. Specifically, we consider the perspective of a last-mile service provider who wants to determine the number of servicing vehicles to allocate to multiple last-mile service regions in a particular city. In each service region, passengers demanding last-mile services arrive in batches, and allocated vehicles deliver passengers to their final destinations. The passenger …


Design Of A Two-Echelon Freight Distribution System In Last-Mile Logistics Considering Covering Locations And Occasional Drivers, Vincent F. Yu, Panca Jodiawan, Ming-Lu Hou, Aldy Gunawan Oct 2021

Design Of A Two-Echelon Freight Distribution System In Last-Mile Logistics Considering Covering Locations And Occasional Drivers, Vincent F. Yu, Panca Jodiawan, Ming-Lu Hou, Aldy Gunawan

Research Collection School Of Computing and Information Systems

This research addresses a new variant of the vehicle routing problem, called the two-echelon vehicle routing problem with time windows, covering options, and occasional drivers (2E-VRPTW-CO-OD). In this problem, two types of fleets are available to serve customers, city freighters and occasional drivers (ODs), while two delivery options are available to customers, home delivery and alternative delivery. For customers choosing the alternative delivery, their demands are delivered to one of the available covering locations for them to pick up. The objective of 2E-VRPTW-CO-OD is to minimize the total cost consisting of routing costs, connection costs, and compensations paid to ODs …


Integrating Empirical Analysis Into Analytical Framework: An Integrated Model Structure For On-Demand Transportation, Yuliu Su, Ying Xu, Costas Courcoubetis, Shih-Fen Cheng Aug 2021

Integrating Empirical Analysis Into Analytical Framework: An Integrated Model Structure For On-Demand Transportation, Yuliu Su, Ying Xu, Costas Courcoubetis, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

On-demand transportation services have been developing in an irresistible trend since their first launch in public. These services not only transform the urban mobility landscape, but also profoundly change individuals’ travel behavior. In this paper, we propose an integrated model structure which integrates empirical analysis into a discrete choice based analytical framework to investigate a heterogeneous population’s choices on ownership, usage and transportation mode with the presence of ride-hailing. Distinguished from traditional discrete choice models where individuals’ choices are only affected by exogenous variables and are independent of other individuals’ choices, our model extends to capture the endogeneity of supply …


Dynamic Lane Traffic Signal Control With Group Attention And Multi-Timescale Reinforcement Learning, Qize Jiang, Jingze Li, Weiwei Sun, Baihua Zheng Aug 2021

Dynamic Lane Traffic Signal Control With Group Attention And Multi-Timescale Reinforcement Learning, Qize Jiang, Jingze Li, Weiwei Sun, Baihua Zheng

Research Collection School Of Computing and Information Systems

Traffic signal control has achieved significant success with the development of reinforcement learning. However, existing works mainly focus on intersections with normal lanes with fixed outgoing directions. It is noticed that some intersections actually implement dynamic lanes, in addition to normal lanes, to adjust the outgoing directions dynamically. Existing methods fail to coordinate the control of traffic signal and that of dynamic lanes effectively. In addition, they lack proper structures and learning algorithms to make full use of traffic flow prediction, which is essential to set the proper directions for dynamic lanes. Motivated by the ineffectiveness of existing approaches when …


Adaptive Operating Hours For Improved Performance Of Taxi Fleets, Rajiv Ranjan Kumar, Pradeep Varakantham, Shih-Fen Cheng May 2021

Adaptive Operating Hours For Improved Performance Of Taxi Fleets, Rajiv Ranjan Kumar, Pradeep Varakantham, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

Taxi fleets and car aggregation systems are an important component of the urban public transportation system. Taxis and cars in taxi fleets and car aggregation systems (e.g., Uber) are dependent on a large number of self-controlled and profit-driven taxi drivers, which introduces inefficiencies in the system. There are two ways in which taxi fleet performance can be optimized: (i) Operational decision making: improve assignment of taxis/cars to customers, while accounting for future demand; (ii) strategic decision making: optimize operating hours of (taxi and car) drivers. Existing research has primarily focused on the operational decisions in (i) and we focus on …


A Smarter Way To Manage Mass Transit In A Smart City: Rail Network Management At Singapore’S Land Transport Authority, Steven M. Miller, Thomas H. Davenport May 2021

A Smarter Way To Manage Mass Transit In A Smart City: Rail Network Management At Singapore’S Land Transport Authority, Steven M. Miller, Thomas H. Davenport

Research Collection School Of Computing and Information Systems

There is no widely agreed upon definition of a supposed “Smart City.” Yet, when you see city employees — in this case city-state employees — working in what are obviously smarter ways, “you know it when you see it.” One such example of a smarter way to work in a smart city setting is the way that employees of the Land Transport Authority (LTA) in Singapore are using a new generation of data driven, AI-enabled support systems to manage the city’s urban rail network. We spoke to LTA officers Kong Wai, Ho (Director of Integrated Operations and Planning) and Chris …


Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet Jan 2021

Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Real-time ridesharing systems such as UberPool, Lyft Line and GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the “right” requests to travel together in the “right” available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. This challenge has been addressed in existing work by: (i) generating as many relevant feasible combinations of requests (with respect to the available delay for customers) as …


Online Traffic Signal Control Through Sample-Based Constrained Optimization, Srishti Dhamija, Alolika Gon, Pradeep Varakantham, William Yeoh Oct 2020

Online Traffic Signal Control Through Sample-Based Constrained Optimization, Srishti Dhamija, Alolika Gon, Pradeep Varakantham, William Yeoh

Research Collection School Of Computing and Information Systems

Traffic congestion reduces productivity of individuals by increasing time spent in traffic and also increases pollution. To reduce traffic congestion by better handling dynamic traffic patterns, recent work has focused on online traffic signal control. Typically, the objective in traffic signal control is to minimize expected delay over all vehicles given the uncertainty associated with the vehicle turn movements at intersections. In order to ensure responsiveness in decision making, a typical approach is to compute a schedule that minimizes the delay for the expected scenario of vehicle movements instead of minimizing expected delay over the feasible vehicle movement scenarios. Such …


Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet Sep 2020

Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Real-time ridesharing systems such as UberPool, Lyft Line, GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the "right" requests to travel together in the "right" available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. This challenge has been addressed in existing work by: (i) generating as many relevant feasible (with respect to the available delay for customers) combinations of requests as possible …


Pricing And Equilibrium In On-Demand Ride-Pooling Markets, Jintao Ke, Hai Yang, Xinwei Li, Hai Wang, Jieping Ye Sep 2020

Pricing And Equilibrium In On-Demand Ride-Pooling Markets, Jintao Ke, Hai Yang, Xinwei Li, Hai Wang, Jieping Ye

Research Collection School Of Computing and Information Systems

With the recent rapid growth of technology-enabled mobility services, ride-sourcing platforms, such as Uber and DiDi, have launched commercial on-demand ride-pooling programs that allow drivers to serve more than one passenger request in each ride. Without requiring the prearrangement of trip schedules, these programs match on-demand passenger requests with vehicles that have vacant seats. Ride-pooling programs are expected to offer benefits for both individual passengers in the form of cost savings and for society in the form of traffic alleviation and emission reduction. In addition to some exogenous variables and environments for ride-sourcing market, such as city size and population …


Bus Frequency Optimization: When Waiting Time Matters In User Satisfaction, Songsong Mo, Zhifeng Bao, Baihua Zheng, Zhiyong Peng Sep 2020

Bus Frequency Optimization: When Waiting Time Matters In User Satisfaction, Songsong Mo, Zhifeng Bao, Baihua Zheng, Zhiyong Peng

Research Collection School Of Computing and Information Systems

Reorganizing bus frequency to cater for the actual travel demand can save the cost of the public transport system significantly. Many, if not all, existing studies formulate this as a bus frequency optimization problem which tries to minimize passengers’ average waiting time. However, many investigations have confirmed that the user satisfaction drops faster as the waiting time increases. Consequently, this paper studies the bus frequency optimization problem considering the user satisfaction. Specifically, for the first time to our best knowledge, we study how to schedule the buses such that the total number of passengers who could receive their bus services …


Adaptive Large Neighborhood Search For Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu Jul 2020

Adaptive Large Neighborhood Search For Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu

Research Collection School Of Computing and Information Systems

Cross-docking is considered as a method to manage and control the inventory flow, which is essential in the context of supply chain management. This paper studies the integration of the vehicle routing problem with cross-docking, namely VRPCD which has been extensively studied due to its ability to reducethe overall costs occurring in a supply chain network. Given a fleet of homogeneous vehicles for delivering a single type of product from suppliers to customers through a cross-dock facility, the objective of VRPCD is to determine the number of vehicles used and the corresponding vehicle routes, such that the vehicleoperational and transportation …


Hierarchical Multiagent Reinforcement Learning For Maritime Traffic Management, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau May 2020

Hierarchical Multiagent Reinforcement Learning For Maritime Traffic Management, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Increasing global maritime traffic coupled with rapid digitization and automation in shipping mandate developing next generation maritime traffic management systems to mitigate congestion, increase safety of navigation, and avoid collisions in busy and geographically constrained ports (such as Singapore's). To achieve these objectives, we model the maritime traffic as a large multiagent system with individual vessels as agents, and VTS (Vessel Traffic Service) authority as a regulatory agent. We develop a hierarchical reinforcement learning approach where vessels first select a high level action based on the underlying traffic flow, and then select the low level action that determines their future …


A Mathematical Programming Model For The Green Mixed Fleet Vehicle Routing Problem With Realistic Energy Consumption And Partial Recharges, Vincent F. Yu, Panca Jodiwan, Aldy Gunawan, Audrey Tedja Widjaja Dec 2019

A Mathematical Programming Model For The Green Mixed Fleet Vehicle Routing Problem With Realistic Energy Consumption And Partial Recharges, Vincent F. Yu, Panca Jodiwan, Aldy Gunawan, Audrey Tedja Widjaja

Research Collection School Of Computing and Information Systems

A green mixed fleet vehicle routing with realistic energy consumption and partial recharges problem (GMFVRP-REC-PR) is addressed in this paper. This problem involves a fixed number of electric vehicles and internal combustion vehicles to serve a set of customers. The realistic energy consumption which depends on several variables is utilized to calculate the electricity consumption of an electric vehicle and fuel consumption of an internal combustion vehicle. Partial recharging policy is included into the problem to represent the real life scenario. The objective of this problem is to minimize the total travelled distance and the total emission produced by internal …


Zac: A Zone Path Construction Approach For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet Jul 2019

Zac: A Zone Path Construction Approach For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Real-time ridesharing systems such as UberPool, Lyft Line, GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the right requests to travel in available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. The most relevant existing work has focussed on generating as many relevant feasible (with respect to available delay for customers) combinations of requests (referred to as trips) as possible in real-time. …


Entrans: Leveraging Kinetic Energy Harvesting Signal For Transportation Mode Detection, Guohao Lan, Weitao Xu, Dong Ma, Sara Khalifa, Mahbub Hassan, Wen Hu Jun 2019

Entrans: Leveraging Kinetic Energy Harvesting Signal For Transportation Mode Detection, Guohao Lan, Weitao Xu, Dong Ma, Sara Khalifa, Mahbub Hassan, Wen Hu

Research Collection School Of Computing and Information Systems

Monitoring the daily transportation modes of an individual provides useful information in many application domains, such as urban design, real-time journey recommendation, as well as providing location-based services. In existing systems, accelerometer and GPS are the dominantly used signal sources for transportation context monitoring which drain out the limited battery life of the wearable devices very quickly. To resolve the high energy consumption issue, in this paper, we present EnTrans, which enables transportation mode detection by using only the kinetic energy harvester as an energy-efficient signal source. The proposed idea is based on the intuition that the vibrations experienced by …


Re-Org: An Online Repositioning Guidance Agent, Muralidhar Konda, Pradeep Varakantham, Aayush Saxena, Meghna Lowalekar May 2019

Re-Org: An Online Repositioning Guidance Agent, Muralidhar Konda, Pradeep Varakantham, Aayush Saxena, Meghna Lowalekar

Research Collection School Of Computing and Information Systems

No abstract provided.


Route Planning For A Fleet Of Electric Vehicles With Waiting Times At Charging Stations, Baoxiang Li, Shashi Shekhar Jha, Hoong Chuin Lau Apr 2019

Route Planning For A Fleet Of Electric Vehicles With Waiting Times At Charging Stations, Baoxiang Li, Shashi Shekhar Jha, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Electric Vehicles (EVs) are the next wave of technology in the transportation industry. EVs are increasingly becoming common for personal transport and pushing the boundaries to become the mainstream mode of transportation. Use of such EVs in logistic fleets for delivering customer goods is not far from becoming reality. However, managing such fleet of EVs bring new challenges in terms of battery capacities and charging infrastructure for efficient route planning. Researchers have addressed such issues considering different aspects of the EVs such as linear battery charging/discharging rate, fixed travel times, etc. In this paper, we address the issue of waiting …


Taxis Strike Back: A Field Trial Of The Driver Guidance System, Shih-Fen Cheng, Shashi Shekhar Jha, Rishikeshan Rajendram Jul 2018

Taxis Strike Back: A Field Trial Of The Driver Guidance System, Shih-Fen Cheng, Shashi Shekhar Jha, Rishikeshan Rajendram

Research Collection School Of Computing and Information Systems

Traditional taxi fleet operators world-over have been facing intense competitions from various ride-hailing services such as Uber and Grab (specific to the Southeast Asia region). Based on our studies on the taxi industry in Singapore, we see that the emergence of Uber and Grab in the ride-hailing market has greatly impacted the taxi industry: the average daily taxi ridership for the past two years has been falling continuously, by close to 20% in total. In this work, we discuss how efficient real-time data analytics and large-scale multi-agent optimization technology could potentially help taxi drivers compete against more technologically advanced service …


Resource-Constrained Scheduling For Maritime Traffic Management, Lucas Agussurja, Akshat Kumar, Hoong Chuin Lau Feb 2018

Resource-Constrained Scheduling For Maritime Traffic Management, Lucas Agussurja, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem of mitigating congestion and preventing hotspots in busy water areas such as Singapore Straits and port waters. Increasing maritime traffic coupled with narrow waterways makes vessel schedule coordination for just-in-time arrival critical for navigational safety. Our contributions are: 1) We formulate the maritime traffic management problem based on the real case study of Singapore waters; 2) We model the problem as a variant of the resource-constrained project scheduling problem (RCPSP), and formulate mixed-integer and constraint programming (MIP/CP) formulations; 3) To improve the scalability, we develop a combinatorial Benders (CB) approach that is significantly more effective than …


Pricing For A Last-Mile Transportation System, Yiwei Chen, Hai Wang Jan 2018

Pricing For A Last-Mile Transportation System, Yiwei Chen, Hai Wang

Research Collection School Of Computing and Information Systems

The Last-Mile Problem refers to the provision of travel service from the nearest public transportation node to a home or other destination. Last-Mile Transportation System (LMTS), which has recently emerged, provide on-demand shared transportation. We consider an LMTS with multiple passenger types—adults, senior citizens, children, and students. The LMTS designer determines the price for the passengers, last-mile service vehicle capacity, and service fleet size (number of vehicles) for each last-mile region to maximize the social welfare generated by the LMTS. The level of last-mile service (in terms of passenger waiting time) is approximated by using a batch arrival, batch service, …


Efficient Gate System Operations For A Multipurpose Port Using Simulation Optimization, Ketki Kulkarni, Trong Khiem Tran, Hai Wang, Hoong Chuin Lau Dec 2017

Efficient Gate System Operations For A Multipurpose Port Using Simulation Optimization, Ketki Kulkarni, Trong Khiem Tran, Hai Wang, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Port capacity is determined by three major infrastructural resources namely, berths, yards and gates. Theadvertised capacity is constrained by the least of the capacities of the three resources. While a lot ofattention has been paid to optimizing berth and yard capacities, not much attention has been given toanalyzing the gate capacity. The gates are a key node between the land-side and sea-side operations in anocean-to-cities value chain. The gate system under consideration, located at an important port in an Asiancity, is a multi-class parallel queuing system with non-homogeneous Poisson arrivals. It is hard to obtaina closed form analytic approach for …


Incentivizing The Use Of Bike Trailers For Dynamic Repositioning In Bike Sharing Systems, Supriyo Ghosh, Pradeep Varakantham Jul 2017

Incentivizing The Use Of Bike Trailers For Dynamic Repositioning In Bike Sharing Systems, Supriyo Ghosh, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

Bike Sharing System (BSS) is a green mode of transportation that is employed extensively for short distance travels in major cities of the world. Unfortunately, the users behaviour driven by their personal needs can often result in empty or full base stations, thereby resulting in loss of customer demand. To counter this loss in customer demand, BSS operators typically utilize a fleet of carrier vehicles for repositioning the bikes between stations. However, this fuel burning mode of repositioning incurs a significant amount of routing, labor cost and further increases carbon emissions. Therefore, we propose a potentially self-sustaining and environment friendly …