Open Access. Powered by Scholars. Published by Universities.®

Software Engineering

Research Collection School Of Computing and Information Systems

Deep learning

Articles 1 - 2 of 2

Full-Text Articles in Artificial Intelligence and Robotics

Recipegen++: An Automated Trigger Action Programs Generator, Imam Nur Bani Yusuf, Diyanah Abdul Jamal, Lingxiao Jiang, David Lo Nov 2022

Recipegen++: An Automated Trigger Action Programs Generator, Imam Nur Bani Yusuf, Diyanah Abdul Jamal, Lingxiao Jiang, David Lo

Research Collection School Of Computing and Information Systems

Trigger Action Programs (TAPs) are event-driven rules that allow users to automate smart-devices and internet services. Users can write TAPs by specifying triggers and actions from a set of predefined channels and functions. Despite its simplicity, composing TAPs can still be challenging for users due to the enormous search space of available triggers and actions. The growing popularity of TAPs is followed by the increasing number of supported devices and services, resulting in a huge number of possible combinations between triggers and actions. Motivated by such a fact, we improve our prior work and propose RecipeGen++, a deep-learning-based approach that …


Comai: Enabling Lightweight, Collaborative Intelligence By Retrofitting Vision Dnns, Kasthuri Jayarajah, Dhanuja Wanniarachchige, Tarek Abdelzaher, Archan Misra Apr 2022

Comai: Enabling Lightweight, Collaborative Intelligence By Retrofitting Vision Dnns, Kasthuri Jayarajah, Dhanuja Wanniarachchige, Tarek Abdelzaher, Archan Misra

Research Collection School Of Computing and Information Systems

While Deep Neural Network (DNN) models have transformed machine vision capabilities, their extremely high computational complexity and model sizes present a formidable deployment roadblock for AIoT applications. We show that the complexity-vs-accuracy-vs-communication tradeoffs for such DNN models can be significantly addressed via a novel, lightweight form of “collaborative machine intelligence” that requires only runtime changes to the inference process. In our proposed approach, called ComAI, the DNN pipelines of different vision sensors share intermediate processing state with one another, effectively providing hints about objects located within their mutually-overlapping Field-of-Views (FoVs). CoMAI uses two novel techniques: (a) a secondary shallow ML …