Open Access. Powered by Scholars. Published by Universities.®

OS and Networks

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 41

Full-Text Articles in Artificial Intelligence and Robotics

Temporal Implicit Multimodal Networks For Investment And Risk Management, Meng Kiat Gary Ang, Ee-Peng Lim Mar 2024

Temporal Implicit Multimodal Networks For Investment And Risk Management, Meng Kiat Gary Ang, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

Many deep learning works on financial time-series forecasting focus on predicting future prices/returns of individual assets with numerical price-related information for trading, and hence propose models designed for univariate, single-task, and/or unimodal settings. Forecasting for investment and risk management involves multiple tasks in multivariate settings: forecasts of expected returns and risks of assets in portfolios, and correlations between these assets. As different sources/types of time-series influence future returns, risks, and correlations of assets in different ways, it is also important to capture time-series from different modalities. Hence, this article addresses financial time-series forecasting for investment and risk management in a …


A Systemic Mapping Study On Intrusion Response Systems, Adel Rezapour, Mohammad Ghasemigol, Daniel Takabi Jan 2024

A Systemic Mapping Study On Intrusion Response Systems, Adel Rezapour, Mohammad Ghasemigol, Daniel Takabi

School of Cybersecurity Faculty Publications

With the increasing frequency and sophistication of network attacks, network administrators are facing tremendous challenges in making fast and optimum decisions during critical situations. The ability to effectively respond to intrusions requires solving a multi-objective decision-making problem. While several research studies have been conducted to address this issue, the development of a reliable and automated Intrusion Response System (IRS) remains unattainable. This paper provides a Systematic Mapping Study (SMS) for IRS, aiming to investigate the existing studies, their limitations, and future directions in this field. A novel semi-automated research methodology is developed to identify and summarize related works. The innovative …


Age Of Sensing Empowered Holographic Isac Framework For Nextg Wireless Networks: A Vae And Drl Approach, Apurba Adhikary, Avi Deb Raha, Yu Qiao, Md. Shirajum Munir, Monishanker Halder, Choong Seon Hong Jan 2024

Age Of Sensing Empowered Holographic Isac Framework For Nextg Wireless Networks: A Vae And Drl Approach, Apurba Adhikary, Avi Deb Raha, Yu Qiao, Md. Shirajum Munir, Monishanker Halder, Choong Seon Hong

School of Cybersecurity Faculty Publications

This paper proposes an artificial intelligence (AI) framework that leverages integrated sensing and communication (ISAC), aided by the age of sensing (AoS) to ensure the timely location updates of the users for a holographic MIMO (HMIMO)- enabled wireless network. The AI-driven framework guarantees optimal power allocation for efficient beamforming by activating the minimal number of grids from the HMIMO base station. An optimization problem is formulated to maximize the sensing utility function, aiming to maximize the signal-to-interference-plus-noise ratio (SINR) of the received signal, beam-pattern gains to improve the sensing SINR of reflected echo signals and maximizing the evidence lower bound …


Affinity Uncertainty-Based Hard Negative Mining In Graph Contrastive Learning, Chaoxi Niu, Guansong Pang, Ling Chen Jan 2024

Affinity Uncertainty-Based Hard Negative Mining In Graph Contrastive Learning, Chaoxi Niu, Guansong Pang, Ling Chen

Research Collection School Of Computing and Information Systems

Hard negative mining has shown effective in enhancing self-supervised contrastive learning (CL) on diverse data types, including graph CL (GCL). The existing hardness-aware CL methods typically treat negative instances that are most similar to the anchor instance as hard negatives, which helps improve the CL performance, especially on image data. However, this approach often fails to identify the hard negatives but leads to many false negatives on graph data. This is mainly due to that the learned graph representations are not sufficiently discriminative due to oversmooth representations and/or non-independent and identically distributed (non-i.i.d.) issues in graph data. To tackle this …


Deep Reinforcement Learning With Explicit Context Representation, Francisco Munguia-Galeano, Ah-Hwee Tan, Ze Ji Oct 2023

Deep Reinforcement Learning With Explicit Context Representation, Francisco Munguia-Galeano, Ah-Hwee Tan, Ze Ji

Research Collection School Of Computing and Information Systems

Though reinforcement learning (RL) has shown an outstanding capability for solving complex computational problems, most RL algorithms lack an explicit method that would allow learning from contextual information. On the other hand, humans often use context to identify patterns and relations among elements in the environment, along with how to avoid making wrong actions. However, what may seem like an obviously wrong decision from a human perspective could take hundreds of steps for an RL agent to learn to avoid. This article proposes a framework for discrete environments called Iota explicit context representation (IECR). The framework involves representing each state …


Dexbert: Effective, Task-Agnostic And Fine-Grained Representation Learning Of Android Bytecode, Tiezhu Sun, Kevin Allix, Kisub Kim, Xin Zhou, Dongsun Kim, David Lo, Tegawendé F. Bissyande, Jacques Klein Oct 2023

Dexbert: Effective, Task-Agnostic And Fine-Grained Representation Learning Of Android Bytecode, Tiezhu Sun, Kevin Allix, Kisub Kim, Xin Zhou, Dongsun Kim, David Lo, Tegawendé F. Bissyande, Jacques Klein

Research Collection School Of Computing and Information Systems

The automation of an increasingly large number of software engineering tasks is becoming possible thanks to Machine Learning (ML). One foundational building block in the application of ML to software artifacts is the representation of these artifacts ( e.g. , source code or executable code) into a form that is suitable for learning. Traditionally, researchers and practitioners have relied on manually selected features, based on expert knowledge, for the task at hand. Such knowledge is sometimes imprecise and generally incomplete. To overcome this limitation, many studies have leveraged representation learning, delegating to ML itself the job of automatically devising suitable …


The Bemi Stardust: A Structured Ensemble Of Binarized Neural Networks, Ambrogio Maria Bernardelli, Stefano Gualandi, Hoong Chuin Lau, Simone Milanesi Jun 2023

The Bemi Stardust: A Structured Ensemble Of Binarized Neural Networks, Ambrogio Maria Bernardelli, Stefano Gualandi, Hoong Chuin Lau, Simone Milanesi

Research Collection School Of Computing and Information Systems

Binarized Neural Networks (BNNs) are receiving increasing attention due to their lightweight architecture and ability to run on low-power devices, given the fact that they can be implemented using Boolean operations. The state-of-the-art for training classification BNNs restricted to few-shot learning is based on a Mixed Integer Programming (MIP) approach. This paper proposes the BeMi ensemble, a structured architecture of classification-designed BNNs based on training a single BNN for each possible pair of classes and applying a majority voting scheme to predict the final output. The training of a single BNN discriminating between two classes is achieved by a MIP …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Learning And Understanding User Interface Semantics From Heterogeneous Networks With Multimodal And Positional Attributes, Meng Kiat Gary Ang, Ee-Peng Lim Mar 2023

Learning And Understanding User Interface Semantics From Heterogeneous Networks With Multimodal And Positional Attributes, Meng Kiat Gary Ang, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

User interfaces (UI) of desktop, web, and mobile applications involve a hierarchy of objects (e.g., applications, screens, view class, and other types of design objects) with multimodal (e.g., textual and visual) and positional (e.g., spatial location, sequence order, and hierarchy level) attributes. We can therefore represent a set of application UIs as a heterogeneous network with multimodal and positional attributes. Such a network not only represents how users understand the visual layout of UIs but also influences how users would interact with applications through these UIs. To model the UI semantics well for different UI annotation, search, and evaluation tasks, …


Effective Graph Kernels For Evolving Functional Brain Networks, Xinlei Wang, Jinyi Chen, Bing Tian Dai, Junchang Xin, Yu Gu, Ge Yu Feb 2023

Effective Graph Kernels For Evolving Functional Brain Networks, Xinlei Wang, Jinyi Chen, Bing Tian Dai, Junchang Xin, Yu Gu, Ge Yu

Research Collection School Of Computing and Information Systems

The graph kernel of the functional brain network is an effective method in the field of neuropsychiatric disease diagnosis like Alzheimer's Disease (AD). The traditional static brain networks cannot reflect dynamic changes of brain activities, but evolving brain networks, which are a series of brain networks over time, are able to seize such dynamic changes. As far as we know, the graph kernel method is effective for calculating the differences among networks. Therefore, it has a great potential to understand the dynamic changes of evolving brain networks, which are a series of chronological differences. However, if the conventional graph kernel …


Defending Ai-Based Automatic Modulation Recognition Models Against Adversarial Attacks, Haolin Tang, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Yanxiao Zhao Jan 2023

Defending Ai-Based Automatic Modulation Recognition Models Against Adversarial Attacks, Haolin Tang, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Yanxiao Zhao

Engineering Technology Faculty Publications

Automatic Modulation Recognition (AMR) is one of the critical steps in the signal processing chain of wireless networks, which can significantly improve communication performance. AMR detects the modulation scheme of the received signal without any prior information. Recently, many Artificial Intelligence (AI) based AMR methods have been proposed, inspired by the considerable progress of AI methods in various fields. On the one hand, AI-based AMR methods can outperform traditional methods in terms of accuracy and efficiency. On the other hand, they are susceptible to new types of cyberattacks, such as model poisoning or adversarial attacks. This paper explores the vulnerabilities …


Self-Checking Deep Neural Networks For Anomalies And Adversaries In Deployment, Yan Xiao, Ivan Beschastnikh, Yun Lin, Rajdeep Singh Hundal, Xiaofei Xie, David S. Rosenblum, Jin Song Dong Aug 2022

Self-Checking Deep Neural Networks For Anomalies And Adversaries In Deployment, Yan Xiao, Ivan Beschastnikh, Yun Lin, Rajdeep Singh Hundal, Xiaofei Xie, David S. Rosenblum, Jin Song Dong

Research Collection School Of Computing and Information Systems

Deep Neural Networks (DNNs) have been widely adopted, yet DNN models are surprisingly unreliable, which raises significant concerns about their use in critical domains. In this work, we propose that runtime DNN mistakes can be quickly detected and properly dealt with in deployment, especially in settings like self-driving vehicles. Just as software engineering (SE) community has developed effective mechanisms and techniques to monitor and check programmed components, our previous work, SelfChecker, is designed to monitor and correct DNN predictions given unintended abnormal test data. SelfChecker triggers an alarm if the decisions given by the internal layer features of the model …


A3gan: Attribute-Aware Anonymization Networks For Face De-Identification, Liming Zhai, Qing Guo, Xiaofei Xie, Lei Ma, Yi Estelle Wang, Yang Liu Jul 2022

A3gan: Attribute-Aware Anonymization Networks For Face De-Identification, Liming Zhai, Qing Guo, Xiaofei Xie, Lei Ma, Yi Estelle Wang, Yang Liu

Research Collection School Of Computing and Information Systems

Face de-identification (De-ID) removes face identity information in face images to avoid personal privacy leakage. Existing face De-ID breaks the raw identity by cutting out the face regions and recovering the corrupted regions via deep generators, which inevitably affect the generation quality and cannot control generation results according to subsequent intelligent tasks (e.g., facial expression recognition). In this work, for the first attempt, we think the face De-ID from the perspective of attribute editing and propose an attribute-aware anonymization network (A3GAN) by formulating face De-ID as a joint task of semantic suppression and controllable attribute injection. Intuitively, the semantic suppression …


Are You Really Muted?: A Privacy Analysis Of Mute Buttons In Video Conferencing Apps, Yucheng Yang, Jack West, George K. Thiruvathukal, Neil Klingensmith, Kassem Fawaz Jul 2022

Are You Really Muted?: A Privacy Analysis Of Mute Buttons In Video Conferencing Apps, Yucheng Yang, Jack West, George K. Thiruvathukal, Neil Klingensmith, Kassem Fawaz

Computer Science: Faculty Publications and Other Works

In the post-pandemic era, video conferencing apps (VCAs) have converted previously private spaces — bedrooms, living rooms, and kitchens — into semi-public extensions of the office. And for the most part, users have accepted these apps in their personal space, without much thought about the permission models that govern the use of their personal data during meetings. While access to a device’s video camera is carefully controlled, little has been done to ensure the same level of privacy for accessing the microphone. In this work, we ask the question: what happens to the microphone data when a user clicks the …


Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco Jan 2022

Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco

Computer Science Faculty Publications

We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event …


Security Hardening Of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks, Ferhat Ozgur Catak, Murat Kuzlu, Haolin Tang, Evren Catak, Yanxiao Zhao Jan 2022

Security Hardening Of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks, Ferhat Ozgur Catak, Murat Kuzlu, Haolin Tang, Evren Catak, Yanxiao Zhao

Engineering Technology Faculty Publications

Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the …


Learning Knowledge-Enriched Company Embeddings For Investment Management, Gary Ang, Ee-Peng Lim Nov 2021

Learning Knowledge-Enriched Company Embeddings For Investment Management, Gary Ang, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

Relationships between companies serve as key channels through which the effects of past stock price movements and news events propagate and influence future price movements. Such relationships can be implicitly found in knowledge bases or explicitly represented as knowledge graphs. In this paper, we propose KnowledgeEnriched Company Embedding (KECE), a novel multi-stage attentionbased dynamic network embedding model combining multimodal information of companies with knowledge from Wikipedia and knowledge graph relationships from Wikidata to generate company entity embeddings that can be applied to a variety of downstream investment management tasks. Experiments on an extensive set of real-world stock prices and news …


Toward Deep Supervised Anomaly Detection: Reinforcement Learning From Partially Labeled Anomaly Data, Guansong Pang, Anton Van Den Hengel, Chunhua Shen, Longbing Cao Aug 2021

Toward Deep Supervised Anomaly Detection: Reinforcement Learning From Partially Labeled Anomaly Data, Guansong Pang, Anton Van Den Hengel, Chunhua Shen, Longbing Cao

Research Collection School Of Computing and Information Systems

We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset. This is a common scenario in many important applications. Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data. We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies. This approach learns the known abnormality by automatically interacting with an anomalybiased simulation environment, while continuously extending the …


Explainable Deep Few-Shot Anomaly Detection With Deviation Networks, Guansong Pang, Choubo Ding, Chunhua Shen, Anton Van Den Hengel Aug 2021

Explainable Deep Few-Shot Anomaly Detection With Deviation Networks, Guansong Pang, Choubo Ding, Chunhua Shen, Anton Van Den Hengel

Research Collection School Of Computing and Information Systems

Existing anomaly detection paradigms overwhelmingly focus on training detection models using exclusively normal data or unlabeled data (mostly normal samples). One notorious issue with these approaches is that they are weak in discriminating anomalies from normal samples due to the lack of the knowledge about the anomalies. Here, we study the problem of few-shot anomaly detection, in which we aim at using a few labeled anomaly examples to train sample-efficient discriminative detection models. To address this problem, we introduce a novel weakly-supervised anomaly detection framework to train detection models without assuming the examples illustrating all possible classes of anomaly.Specifically, the …


Claim: Curriculum Learning Policy For Influence Maximization In Unknown Social Networks, Dexun Li, Meghna Lowalekar, Pradeep Varakantham Jul 2021

Claim: Curriculum Learning Policy For Influence Maximization In Unknown Social Networks, Dexun Li, Meghna Lowalekar, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

Influence maximization is the problem of finding a small subset of nodes in a network that can maximize the diffusion of information. Recently, it has also found application in HIV prevention, substance abuse prevention, micro-finance adoption, etc., where the goal is to identify the set of peer leaders in a real-world physical social network who can disseminate information to a large group of people. Unlike online social networks, real-world networks are not completely known, and collecting information about the network is costly as it involves surveying multiple people. In this paper, we focus on this problem of network discovery for …


Adaptive Aggregation Networks For Class-Incremental Learning, Yaoyao Liu, Bernt Schiele, Qianru Sun Jun 2021

Adaptive Aggregation Networks For Class-Incremental Learning, Yaoyao Liu, Bernt Schiele, Qianru Sun

Research Collection School Of Computing and Information Systems

Class-Incremental Learning (CIL) aims to learn a classification model with the number of classes increasing phase-by-phase. An inherent problem in CIL is the stability-plasticity dilemma between the learning of old and new classes, i.e., high-plasticity models easily forget old classes, but high-stability models are weak to learn new classes. We alleviate this issue by proposing a novel network architecture called Adaptive Aggregation Networks (AANets) in which we explicitly build two types of residual blocks at each residual level (taking ResNet as the baseline architecture): a stable block and a plastic block. We aggregate the output feature maps from these two …


Deep Learning For Anomaly Detection: Challenges, Methods, And Opportunities, Guansong Pang, Longbing Cao, Charu Aggarwal Mar 2021

Deep Learning For Anomaly Detection: Challenges, Methods, And Opportunities, Guansong Pang, Longbing Cao, Charu Aggarwal

Research Collection School Of Computing and Information Systems

In this tutorial we aim to present a comprehensive survey of the advances in deep learning techniques specifically designed for anomaly detection (deep anomaly detection for short). Deep learning has gained tremendous success in transforming many data mining and machine learning tasks, but popular deep learning techniques are inapplicable to anomaly detection due to some unique characteristics of anomalies, e.g., rarity, heterogeneity, boundless nature, and prohibitively high cost of collecting large-scale anomaly data. Through this tutorial, audiences would gain a systematic overview of this area, learn the key intuitions, objective functions, underlying assumptions, advantages and disadvantages of different categories of …


On Studying Distributed Machine Learning, Simeon Eberz Jan 2021

On Studying Distributed Machine Learning, Simeon Eberz

Senior Honors Theses

The Internet of Things (IoT) is utilizing Deep Learning (DL) for applications such as voice or image recognition. Processing data for DL directly on IoT edge devices reduces latency and increases privacy. To overcome the resource constraints of IoT edge devices, the computation for DL inference is distributed between a cluster of several devices. This paper explores DL, IoT networks, and a novel framework for distributed processing of DL in IoT clusters. The aim is to facilitate and simplify deployment, testing, and study of a distributed DL system, even without physical devices. The contributions of this paper are a deployment …


A Multicut Outer-Approximation Approach For Competitive Facility Location Under Random Utilities, Tien Mai, Andrea Lodi Aug 2020

A Multicut Outer-Approximation Approach For Competitive Facility Location Under Random Utilities, Tien Mai, Andrea Lodi

Research Collection School Of Computing and Information Systems

This work concerns the maximum capture facility location problem with random utilities, i.e., the problem of seeking to locate new facilities in a competitive market such that the captured demand of users is maximized, assuming that each individual chooses among all available facilities according to a random utility maximization model. The main challenge lies in the nonlinearity of the objective function. Motivated by the convexity and separable structure of such an objective function, we propose an enhanced implementation of the outer approximation scheme. Our algorithm works in a cutting plane fashion and allows to separate the objective function into a …


Learning Transferable Deep Convolutional Neural Networks For The Classification Of Bacterial Virulence Factors, Dandan Zheng, Guansong Pang, Bo Liu, Lihong Chen, Jian Yang Jun 2020

Learning Transferable Deep Convolutional Neural Networks For The Classification Of Bacterial Virulence Factors, Dandan Zheng, Guansong Pang, Bo Liu, Lihong Chen, Jian Yang

Research Collection School Of Computing and Information Systems

Motivation: Identification of virulence factors (VFs) is critical to the elucidation of bacterial pathogenesis and prevention of related infectious diseases. Current computational methods for VF prediction focus on binary classification or involve only several class(es) of VFs with sufficient samples. However, thousands of VF classes are present in real-world scenarios, and many of them only have a very limited number of samples available.Results: We first construct a large VF dataset, covering 3446 VF classes with 160 495 sequences, and then propose deep convolutional neural network models for VF classification. We show that (i) for common VF classes with sufficient samples, …


Storage Management Strategy In Mobile Phones For Photo Crowdsensing, En Wang, Zhengdao Qu, Xinyao Liang, Xiangyu Meng, Yongjian Yang, Dawei Li, Weibin Meng Apr 2020

Storage Management Strategy In Mobile Phones For Photo Crowdsensing, En Wang, Zhengdao Qu, Xinyao Liang, Xiangyu Meng, Yongjian Yang, Dawei Li, Weibin Meng

Department of Computer Science Faculty Scholarship and Creative Works

In mobile crowdsensing, some users jointly finish a sensing task through the sensors equipped in their intelligent terminals. In particular, the photo crowdsensing based on Mobile Edge Computing (MEC) collects pictures for some specific targets or events and uploads them to nearby edge servers, which leads to richer data content and more efficient data storage compared with the common mobile crowdsensing; hence, it has attracted an important amount of attention recently. However, the mobile users prefer uploading the photos through Wifi APs (PoIs) rather than cellular networks. Therefore, photos stored in mobile phones are exchanged among users, in order to …


Generative Adversarial Networks For Visible To Infrared Video Conversion, Mohammad Shahab Uddin, Jiang Li, Chiman Kwan (Ed.) Jan 2020

Generative Adversarial Networks For Visible To Infrared Video Conversion, Mohammad Shahab Uddin, Jiang Li, Chiman Kwan (Ed.)

Electrical & Computer Engineering Faculty Publications

Deep learning models are data driven. For example, the most popular convolutional neural network (CNN) model used for image classification or object detection requires large labeled databases for training to achieve competitive performances. This requirement is not difficult to be satisfied in the visible domain since there are lots of labeled video and image databases available nowadays. However, given the less popularity of infrared (IR) camera, the availability of labeled infrared videos or image databases is limited. Therefore, training deep learning models in infrared domain is still challenging. In this chapter, we applied the pix2pix generative adversarial network (Pix2Pix GAN) …


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis has …


Manifold-Valued Image Generation With Wasserstein Generative Adversarial Nets, Zhiwu Huang, Wu J., G. L. Van Feb 2019

Manifold-Valued Image Generation With Wasserstein Generative Adversarial Nets, Zhiwu Huang, Wu J., G. L. Van

Research Collection School Of Computing and Information Systems

Generative modeling over natural images is one of the most fundamental machine learning problems. However, few modern generative models, including Wasserstein Generative Adversarial Nets (WGANs), are studied on manifold-valued images that are frequently encountered in real-world applications. To fill the gap, this paper first formulates the problem of generating manifold-valued images and exploits three typical instances: hue-saturation-value (HSV) color image generation, chromaticity-brightness (CB) color image generation, and diffusion-tensor (DT) image generation. For the proposed generative modeling problem, we then introduce a theorem of optimal transport to derive a new Wasserstein distance of data distributions on complete manifolds, enabling us to …


Building Deep Networks On Grassmann Manifolds, Zhiwu Huang, J. Wu, Gool L. Van Feb 2018

Building Deep Networks On Grassmann Manifolds, Zhiwu Huang, J. Wu, Gool L. Van

Research Collection School Of Computing and Information Systems

Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re-orthonormalization layers to normalize the resulting matrices, study projection pooling layers to reduce the model complexity in the Grassmannian context, and devise projection mapping layers to respect Grassmannian geometry and meanwhile achieve Euclidean forms for regular output layers. To train the Grassmann networks, …