Open Access. Powered by Scholars. Published by Universities.®

Engineering

Series

Machine learning

Articles 1 - 30 of 40

Full-Text Articles in Artificial Intelligence and Robotics

Integration Of Matlab And Machine Learning To Accelerate Evaluation Of Biological Activity In Agricultural Soils And Promote Soil Health Improvement Goals, Andrew Stiven Ortiz Balsero Aug 2024

Integration Of Matlab And Machine Learning To Accelerate Evaluation Of Biological Activity In Agricultural Soils And Promote Soil Health Improvement Goals, Andrew Stiven Ortiz Balsero

Department of Biological Systems Engineering: Dissertations and Theses

Traditionally, assessments of soil biological activity have been confined to laboratory settings, creating a disconnect with practical in-field methods. To bridge this gap, cotton fabric degradation has been used to illustrate soil microbial activity under different management practices. While effective, these demonstrations are subjective and labor-intensive.

Researchers have explored using image processing software like ImageJ and Adobe Photoshop to streamline this process. Although these tools accurately quantified fabric degradation under varying soil conditions, the methods remained labor-intensive and complex. Consequently, these methods were still not ideal for on-farm use by agricultural practitioners.

To further address labor and complexity limitations, the …


Next-Generation Crop Monitoring Technologies: Case Studies About Edge Image Processing For Crop Monitoring And Soil Water Property Modeling Via Above-Ground Sensors, Nipuna Chamara May 2024

Next-Generation Crop Monitoring Technologies: Case Studies About Edge Image Processing For Crop Monitoring And Soil Water Property Modeling Via Above-Ground Sensors, Nipuna Chamara

Dissertations and Doctoral Documents from University of Nebraska-Lincoln, 2023–

Artificial Intelligence (AI) has advanced rapidly in the past two decades. Internet of Things (IoT) technology has advanced rapidly during the last decade. Merging these two technologies has immense potential in several industries, including agriculture.

We have identified several research gaps in utilizing IoT technology in agriculture. One problem was the digital divide between rural, unconnected, or limited connected areas and urban areas for utilizing images for decision-making, which has advanced with the growth of AI. Another area for improvement was the farmers' demotivation to use in-situ soil moisture sensors for irrigation decision-making due to inherited installation difficulties. As Nebraska …


Applications Of Ai/Ml In Maritime Cyber Supply Chains, Rafael Diaz, Ricardo Ungo, Katie Smith, Lida Haghnegahdar, Bikash Singh, Tran Phuong Jan 2024

Applications Of Ai/Ml In Maritime Cyber Supply Chains, Rafael Diaz, Ricardo Ungo, Katie Smith, Lida Haghnegahdar, Bikash Singh, Tran Phuong

School of Cybersecurity Faculty Publications

Digital transformation is a new trend that describes enterprise efforts in transitioning manual and likely outdated processes and activities to digital formats dominated by the extensive use of Industry 4.0 elements, including the pervasive use of cyber-physical systems to increase efficiency, reduce waste, and increase responsiveness. A new domain that intersects supply chain management and cybersecurity emerges as many processes as possible of the enterprise require the convergence and synchronizing of resources and information flows in data-driven environments to support planning and execution activities. Protecting the information becomes imperative as big data flows must be parsed and translated into actions …


Autonomous Strike Uavs In Support Of Homeland Security Missions: Challenges And Preliminary Solutions, Meshari Aljohani, Ravi Mukkamala, Stephan Olariu Jan 2024

Autonomous Strike Uavs In Support Of Homeland Security Missions: Challenges And Preliminary Solutions, Meshari Aljohani, Ravi Mukkamala, Stephan Olariu

Computer Science Faculty Publications

Unmanned Aerial Vehicles (UAVs) are becoming crucial tools in modern homeland security applications, primarily because of their cost-effectiveness, risk reduction, and ability to perform a wider range of activities. This study focuses on the use of autonomous UAVs to conduct, as part of homeland security applications, strike missions against high-value terrorist targets. Owing to developments in ledger technology, smart contracts, and machine learning, activities formerly carried out by professionals or remotely flown UAVs are now feasible. Our study provides the first in-depth analysis of the challenges and preliminary solutions for the successful implementation of an autonomous UAV mission. Specifically, we …


A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari Jan 2024

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …


Triphlapan: Predicting Hla Molecules Binding Peptides Based On Triple Coding Matrix And Transfer Learning, Meng Wang, Chuqi Lei, Jianxin Wang, Yaohang Li, Min Li Jan 2024

Triphlapan: Predicting Hla Molecules Binding Peptides Based On Triple Coding Matrix And Transfer Learning, Meng Wang, Chuqi Lei, Jianxin Wang, Yaohang Li, Min Li

Computer Science Faculty Publications

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding …


Statistical And Machine Learning Approaches To Describe Factors Affecting Preweaning Mortality Of Piglets, Md Towfiqur Rahman, Tami M. Brown-Brandl, Gary A. Rohrer, Sudhendu R. Sharma, Vamsi Manthena, Yeyin Shi Oct 2023

Statistical And Machine Learning Approaches To Describe Factors Affecting Preweaning Mortality Of Piglets, Md Towfiqur Rahman, Tami M. Brown-Brandl, Gary A. Rohrer, Sudhendu R. Sharma, Vamsi Manthena, Yeyin Shi

Department of Biological Systems Engineering: Papers and Publications

High preweaning mortality (PWM) rates for piglets are a significant concern for the worldwide pork industries, causing economic loss and well-being issues. This study focused on identifying the factors affecting PWM, overlays, and predicting PWM using historical production data with statistical and machine learning models. Data were collected from 1,982 litters from the United States Meat Animal Research Center, Nebraska, over the years 2016 to 2021. Sows were housed in a farrowing building with three rooms, each with 20 farrowing crates, and taken care of by well-trained animal caretakers. A generalized linear model was used to analyze the various sow, …


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty Jan 2023

Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty

VMASC Publications

Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and …


A Survey On Artificial Intelligence-Based Acoustic Source Identification, Ruba Zaheer, Iftekhar Ahmad, Daryoush Habibi, Kazi Y. Islam, Quoc Viet Phung Jan 2023

A Survey On Artificial Intelligence-Based Acoustic Source Identification, Ruba Zaheer, Iftekhar Ahmad, Daryoush Habibi, Kazi Y. Islam, Quoc Viet Phung

Research outputs 2022 to 2026

The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we …


Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty Jan 2023

Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty

Electrical & Computer Engineering Faculty Publications

There is a great demand for an efficient security framework which can secure IoT systems from potential adversarial attacks. However, it is challenging to design a suitable security model for IoT considering the dynamic and distributed nature of IoT. This motivates the researchers to focus more on investigating the role of machine learning (ML) in the designing of security models. A brief analysis of different ML algorithms for IoT security is discussed along with the advantages and limitations of ML algorithms. Existing studies state that ML algorithms suffer from the problem of high computational overhead and risk of privacy leakage. …


Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …


Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.) Jan 2023

Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.)

Electrical & Computer Engineering Faculty Publications

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.


Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner Jan 2023

Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner

Electrical & Computer Engineering Faculty Publications

This paper presents a novel deep-learning (DL)-based approach for classifying digitally modulated signals, which involves the use of capsule networks (CAPs) together with the cyclic cumulant (CC) features of the signals. These were blindly estimated using cyclostationary signal processing (CSP) and were then input into the CAP for training and classification. The classification performance and the generalization abilities of the proposed approach were tested using two distinct datasets that contained the same types of digitally modulated signals, but had distinct generation parameters. The results showed that the classification of digitally modulated signals using CAPs and CCs proposed in the paper …


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …


An Optimized And Scalable Blockchain-Based Distributed Learning Platform For Consumer Iot, Zhaocheng Wang, Xueying Liu, Xinming Shao, Abdullah Alghamdi, Md. Shirajum Munir, Sujit Biswas Jan 2023

An Optimized And Scalable Blockchain-Based Distributed Learning Platform For Consumer Iot, Zhaocheng Wang, Xueying Liu, Xinming Shao, Abdullah Alghamdi, Md. Shirajum Munir, Sujit Biswas

School of Cybersecurity Faculty Publications

Consumer Internet of Things (CIoT) manufacturers seek customer feedback to enhance their products and services, creating a smart ecosystem, like a smart home. Due to security and privacy concerns, blockchain-based federated learning (BCFL) ecosystems can let CIoT manufacturers update their machine learning (ML) models using end-user data. Federated learning (FL) uses privacy-preserving ML techniques to forecast customers' needs and consumption habits, and blockchain replaces the centralized aggregator to safeguard the ecosystem. However, blockchain technology (BCT) struggles with scalability and quick ledger expansion. In BCFL, local model generation and secure aggregation are other issues. This research introduces a novel architecture, emphasizing …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur Jan 2023

Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur

Mechanical & Aerospace Engineering Faculty Publications

The present paper culminates several investigations into the use of convolutional neural networks (CNNs) as a post-processing step to improve the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for subsonic flows over airfoils at low angles of attack. Time-averaged detached eddy simulation (DES)-generated flow fields serve as the target data for creating and training CNN models. CNN post-processing generates flow-field data comparable to DES resolution, but after using only URANS-level resources and properly training CNN models. This document outlines the underlying theory and progress toward the goal of improving URANS simulations by looking at flow predictions for a class of …


Part I - Ai And Data As Medical Devices, W. Nicholson Price Ii Jan 2022

Part I - Ai And Data As Medical Devices, W. Nicholson Price Ii

Other Publications

It may seem counterintuitive to open a book on medical devices with chapters on software and data, but these are the frontiers of new medical device regulation and law. Physical devices are still crucial to medicine, but they – and medical practice as a whole – are embedded in and permeated by networks of software and caches of data. Those software systems are often mindbogglingly complex and largely inscrutable, involving artificial intelligence and machine learning. Ensuring that such software works effectively and safely remains a substantial challenge for regulators and policymakers. Each of the three chapters in this part examines …


Security Concerns On Machine Learning Solutions For 6g Networks In Mmwave Beam Prediction, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Umit Cali, Devrim Unal Jan 2022

Security Concerns On Machine Learning Solutions For 6g Networks In Mmwave Beam Prediction, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Umit Cali, Devrim Unal

Engineering Technology Faculty Publications

6G – sixth generation – is the latest cellular technology currently under development for wireless communication systems. In recent years, machine learning (ML) algorithms have been applied widely in various fields, such as healthcare, transportation, energy, autonomous cars, and many more. Those algorithms have also been used in communication technologies to improve the system performance in terms of frequency spectrum usage, latency, and security. With the rapid developments of ML techniques, especially deep learning (DL), it is critical to consider the security concern when applying the algorithms. While ML algorithms offer significant advantages for 6G networks, security concerns on artificial …


Facial Landmark Feature Fusion In Transfer Learning Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Norou Diawara, Khan M. Iftekharuddin Jan 2022

Facial Landmark Feature Fusion In Transfer Learning Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Norou Diawara, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Automatic classification of child facial expressions is challenging due to the scarcity of image samples with annotations. Transfer learning of deep convolutional neural networks (CNNs), pretrained on adult facial expressions, can be effectively finetuned for child facial expression classification using limited facial images of children. Recent work inspired by facial age estimation and age-invariant face recognition proposes a fusion of facial landmark features with deep representation learning to augment facial expression classification performance. We hypothesize that deep transfer learning of child facial expressions may also benefit from fusing facial landmark features. Our proposed model architecture integrates two input branches: a …


Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin Mar 2021

Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin

FIU Electronic Theses and Dissertations

The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 …


Continuity Of Chen-Fliess Series For Applications In System Identification And Machine Learning, Rafael Dahmen, W. Steven Gray, Alexander Schmeding Jan 2021

Continuity Of Chen-Fliess Series For Applications In System Identification And Machine Learning, Rafael Dahmen, W. Steven Gray, Alexander Schmeding

Electrical & Computer Engineering Faculty Publications

Model continuity plays an important role in applications like system identification, adaptive control, and machine learning. This paper provides sufficient conditions under which input-output systems represented by locally convergent Chen-Fliess series are jointly continuous with respect to their generating series and as operators mapping a ball in an Lp-space to a ball in an Lq-space, where p and q are conjugate exponents. The starting point is to introduce a class of topological vector spaces known as Silva spaces to frame the problem and then to employ the concept of a direct limit to describe convergence. The proof of the main …


A Big Data Lake For Multilevel Streaming Analytics, Ruoran Liu, Haruna Isah, Farhana Zulkernine Sep 2020

A Big Data Lake For Multilevel Streaming Analytics, Ruoran Liu, Haruna Isah, Farhana Zulkernine

Publications and Scholarship

Large organizations are seeking to create new architectures and scalable platforms to effectively handle data management challenges due to the explosive nature of data rarely seen in the past. These data management challenges are largely posed by the availability of streaming data at high velocity from various sources in multiple formats. The changes in data paradigm have led to the emergence of new data analytics and management architecture. This paper focuses on storing high volume, velocity and variety data in the raw formats in a data storage architecture called a data lake. First, we present our study on the limitations …


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Cyber-Physical Security With Rf Fingerprint Classification Through Distance Measure Extensions Of Generalized Relevance Learning Vector Quantization, Trevor J. Bihl, Todd J. Paciencia, Kenneth W. Bauer Jr., Michael A. Temple Feb 2020

Cyber-Physical Security With Rf Fingerprint Classification Through Distance Measure Extensions Of Generalized Relevance Learning Vector Quantization, Trevor J. Bihl, Todd J. Paciencia, Kenneth W. Bauer Jr., Michael A. Temple

Faculty Publications

Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured data. The Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of “winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are computed between exemplars and PVs, and …


Machine Learning In Manufacturing: Review, Synthesis, And Theoretical Framework, Ajit Sharma, Zhibo Zhang, Rahul Rai Jan 2020

Machine Learning In Manufacturing: Review, Synthesis, And Theoretical Framework, Ajit Sharma, Zhibo Zhang, Rahul Rai

Business Administration Faculty Research Publications

There has been a paradigmatic shift in manufacturing as computing has transitioned from the programmable to the cognitive computing era. In this paper we present a theoretical framework for understanding this paradigmatic shift in manufacturing and the fast evolving role of artificial intelligence. Policy, Strategic and Operational implications are discussed. Implications for the future of strategy and operations in manufacturing are also discussed. Future research directions are presented.


Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin Jan 2020

Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

This guest editorial summarizes the Special Section on Machine Learning in Optics.


Depressiongnn: Depression Prediction Using Graph Neural Network On Smartphone And Wearable Sensors, Param Bidja May 2019

Depressiongnn: Depression Prediction Using Graph Neural Network On Smartphone And Wearable Sensors, Param Bidja

Honors Scholar Theses

Depression prediction is a complicated classification problem because depression diagnosis involves many different social, physical, and mental signals. Traditional classification algorithms can only reach an accuracy of no more than 70% given the complexities of depression. However, a novel approach using Graph Neural Networks (GNN) can be used to reach over 80% accuracy, if a graph can represent the depression data set to capture differentiating features. Building such a graph requires 1) the definition of node features, which must be highly correlated with depression, and 2) the definition for edge metrics, which must also be highly correlated with depression. In …


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis has …