Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Artificial Intelligence and Robotics

Integrated Organizational Machine Learning For Aviation Flight Data, Michael J. Pritchard, Paul Thomas, Eric Webb, Jon Martin, Austin Walden Jan 2023

Integrated Organizational Machine Learning For Aviation Flight Data, Michael J. Pritchard, Paul Thomas, Eric Webb, Jon Martin, Austin Walden

National Training Aircraft Symposium (NTAS)

An increased availability of data and computing power has allowed organizations to apply machine learning techniques to various fleet monitoring activities. Additionally, our ability to acquire aircraft data has increased due to the miniaturization of small form factor computing machines. Aircraft data collection processes contain many data features in the form of multivariate time-series (continuous, discrete, categorical, etc.) which can be used to train machine learning models. Yet, three major challenges still face many flight organizations 1) integration and automation of data collection frameworks, 2) data cleanup and preparation, and 3) embedded machine learning framework. Data cleanup and preparation has …


Robotic Olfactory-Based Navigation With Mobile Robots, Lingxiao Wang Dec 2021

Robotic Olfactory-Based Navigation With Mobile Robots, Lingxiao Wang

Doctoral Dissertations and Master's Theses

Robotic odor source localization (OSL) is a technology that enables mobile robots or autonomous vehicles to find an odor source in unknown environments. It has been viewed as challenging due to the turbulent nature of airflows and the resulting odor plume characteristics. The key to correctly finding an odor source is designing an effective olfactory-based navigation algorithm, which guides the robot to detect emitted odor plumes as cues in finding the source. This dissertation proposes three kinds of olfactory-based navigation methods to improve search efficiency while maintaining a low computational cost, incorporating different machine learning and artificial intelligence methods.

A. …


Dynamic Task Allocation In Partially Defined Environments Using A* With Bounded Costs, James Hendrickson May 2021

Dynamic Task Allocation In Partially Defined Environments Using A* With Bounded Costs, James Hendrickson

Doctoral Dissertations and Master's Theses

The sector of maritime robotics has seen a boom in operations in areas such as surveying and mapping, clean-up, inspections, search and rescue, law enforcement, and national defense. As this sector has continued to grow, there has been an increased need for single unmanned systems to be able to undertake more complex and greater numbers of tasks. As the maritime domain can be particularly difficult for autonomous vehicles to operate in due to the partially defined nature of the environment, it is crucial that a method exists which is capable of dynamically accomplishing tasks within this operational domain. By considering …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Coverage Guided Differential Adversarial Testing Of Deep Learning Systems, Jianmin Guo, Houbing Song, Yue Zhao, Yu Jiang Jan 2020

Coverage Guided Differential Adversarial Testing Of Deep Learning Systems, Jianmin Guo, Houbing Song, Yue Zhao, Yu Jiang

Publications

Deep learning is increasingly applied to safety-critical application domains such as autonomous cars and medical devices. It is of significant importance to ensure their reliability and robustness. In this paper, we propose DLFuzz, the coverage guided differential adversarial testing framework to guide deep learing systems exposing incorrect behaviors. DLFuzz keeps minutely mutating the input to maximize the neuron coverage and the prediction difference between the original input and the mutated input, without manual labeling effort or cross-referencing oracles from other systems with the same functionality. We also design multiple novel strategies for neuron selection to improve the neuron coverage. The …


Magic Triangle – Human, Exoskeleton, And Collaborative Robot Scenario, R. A. Goehlich, M. H. Rutsch, I. Krohne Jan 2018

Magic Triangle – Human, Exoskeleton, And Collaborative Robot Scenario, R. A. Goehlich, M. H. Rutsch, I. Krohne

Publications

The incidence of musculoskeletal disorders in workplaces with difficult ergonomic conditions is increasing. Today, there is a growing market for technical support systems that avoid repetitive strain on the musculoskeletal system. We have been observing two (parallel) lines of development: on the one hand, the development of exoskeletons supporting shop floor operators and, on the other hand, the development of collaborative robots for the creation of hybrid teams. The focus of our research is the combined application of exoskeletons AND collaborative robots for shop floor operators in the aerospace industry. Our approach is to analyze various scenarios to understand which …


Harnessing Predictive Models For Assisting Network Forensic Investigations Of Dns Tunnels, Irvin Homem, Panagiotis Papapetrou May 2017

Harnessing Predictive Models For Assisting Network Forensic Investigations Of Dns Tunnels, Irvin Homem, Panagiotis Papapetrou

Annual ADFSL Conference on Digital Forensics, Security and Law

In recent times, DNS tunneling techniques have been used for malicious purposes, however network security mechanisms struggle to detect them. Network forensic analysis has been proven effective, but is slow and effort intensive as Network Forensics Analysis Tools struggle to deal with undocumented or new network tunneling techniques. In this paper, we present a machine learning approach, based on feature subsets of network traffic evidence, to aid forensic analysis through automating the inference of protocols carried within DNS tunneling techniques. We explore four network protocols, namely, HTTP, HTTPS, FTP, and POP3. Three features are extracted from the DNS tunneled traffic: …


Trends. War On Personality And Personality And War: Comments On Nass And Lee (2002), Ibpp Editor Sep 2002

Trends. War On Personality And Personality And War: Comments On Nass And Lee (2002), Ibpp Editor

International Bulletin of Political Psychology

This Trends article discusses another article – Identity and deconstruction, by Clifford Nass and Kwan Min Yee – published in volume 3 (2002) of Archives of Psychiatry & Psychotherapy in which the authors demonstrate that people reliably attribute personality characteristics to computer-synthesized speech, exploring the ramifications in a political psychological context.