Open Access. Powered by Scholars. Published by Universities.®

Polymer Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Polymer Chemistry

Degradation Kinetics And Functional Design Of Linear Self-Immolative Polymers, Ryan A. Mcbride Jun 2013

Degradation Kinetics And Functional Design Of Linear Self-Immolative Polymers, Ryan A. Mcbride

Electronic Thesis and Dissertation Repository

Linear self-immolative polymers display a potential to address many of the limitations in the control over the degradation process in traditional biodegradable polymers. These materials are unique relative to most degradable 
polymers, in that they undergo end-to-end depolymerization in
 response to the cleavage of a stabilizing end-capping agent. Although one of their cited 
attributes is a dependence of their degradation time on chain length, no conclusive study has been conducted to demonstrate and study this 
effect. Using a previously reported linear self-immolative backbone derived from alternating 4-hydroxybenzyl alcohol and N,N’-dimethylethylenediamine spacers, this work offers the first conclusive study demonstrating …


Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec Jun 2013

Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec

Electronic Thesis and Dissertation Repository

Biomaterials can be used in a wide variety of medical applications owing to their breadth of characteristics that can be imparted by varying their chemical structures. Butyl rubber (IIR), which is a copolymer of isobutylene (IB) and small percentages of isoprene (IP), is particularly attractive as a biomaterial because of its elastomeric mechanical properties, biocompatibility, impermeability and high damping characteristics. IIR is typically vulcanized through chemical-based crosslinking mechanisms. However, these methods are not acceptable for biological applications. This thesis focuses on the synthesis of IIR-polyester graft copolymers by grafting biodegradable and biocompatible polyesters including poly(caprolactone) (PCL) and poly(d,l-lactide) (PDLLA) to …