Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

2010

Li-ion batteries

Chemical Engineering

Articles 1 - 2 of 2

Full-Text Articles in Physical Chemistry

The Sol-Gel Synthesis And Electrochemical Performance Of Li_3v_2(Po_4)_3/C Cathode Material For Lithium Ion Battery, Li-Ying Liu, Lian Chen, Hai-Yan Zhang, Yu-Chun Zhai Nov 2010

The Sol-Gel Synthesis And Electrochemical Performance Of Li_3v_2(Po_4)_3/C Cathode Material For Lithium Ion Battery, Li-Ying Liu, Lian Chen, Hai-Yan Zhang, Yu-Chun Zhai

Journal of Electrochemistry

Li3V2(PO4)3/C was synthesized by sol-gel method with citric acid as chelate and C sources.Physical and electrochemical performances of as-prepared materials were characterized through XRD,SEM and galvanostatic charge-discharge tests,etc.The results showed that products produced by calcining at 800 ℃ for 12 h had a single phase crystal structure and relatively small particle sizes with uniform distribution.At 0.1 C,0.5 C and 1 C,the initial specific discharge capacities were 153.0,143.1 and 130.6 mAh·g-1,respectively,and capacity efficiencies were 93.1%,85.4% and 77.3% after 50 cycles,respectively.Charge efficiencies were all above 80% and discharge voltages were higher.


Synthesis And Electrochemical Properties Of Li_3v_2(Po_4)_3/C Cathode Materials For Lithium Ion Battery, Li-Ying Liu, Hai-Yan Zhang, Lian Chen, Yu-Chun Zhai May 2010

Synthesis And Electrochemical Properties Of Li_3v_2(Po_4)_3/C Cathode Materials For Lithium Ion Battery, Li-Ying Liu, Hai-Yan Zhang, Lian Chen, Yu-Chun Zhai

Journal of Electrochemistry

Cathode material Li3V2( PO4) 3 /C for Lithium-ion battery was synthesized by combination of ball milling and baking. Physical and electrochemical performances of as-prepared materials were characterized through XRD,EIS and galvanostatic cell cycling. The results show that the products were monoclinic Li3 V2 ( PO4) 3 with well-developed crystal structure. At 0. 1C,0. 25C and 0. 5C,the initial discharge capacities were 150. 6,134. 1 and 107. 1 mAh·g-1 ,respectively. Capacity retention rates were 87. 3% after 130 cycles at 0. 25C and 87. 2% after 105 cycles at 0. 5C. Charge-discharge efficiencies were all above 80% and the average discharge …