Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Conference

Murray State University

Articles 1 - 2 of 2

Full-Text Articles in Physical Chemistry

Predicting The Reactions Of Cs2, Ocs, And Co2 With Group Iv And Group Vi Transition Metal Oxides, Marissa Shea Blair, Zachary Ryan Lee Phd, David A. Dixon Phd Jan 2024

Predicting The Reactions Of Cs2, Ocs, And Co2 With Group Iv And Group Vi Transition Metal Oxides, Marissa Shea Blair, Zachary Ryan Lee Phd, David A. Dixon Phd

Posters-at-the-Capitol

Building on a recent serious of high level electronic structure studies of Lewis acid gas reactions with metal oxide sorbents, DFT (B3LYP and ωB97X-D) and CCSD(T) methods are being used to predict the Lewis acid-base addition (physisorption) and formation of metal oxide carbonate/thiocarbonate formation (chemisorption) reactions of CS2, OCS, and CO2 of CS2, OCS, and CO2 with Group IV (MO2)n and Group VI (MO3)n (n = 1 - 3) nanoclusters. For the Group IV oxides, chemisorption to form terminal carbonates and thiocarbonates is predicted to be the most favored, with thiocarbonate ligand binding energies slightly more exothermic than their carbonate …


Exploring The Geometric And Electronic Properties Of Palladium Doped Silicon Clusters, Madison Winkeler, Ciara N. Richardson Nov 2021

Exploring The Geometric And Electronic Properties Of Palladium Doped Silicon Clusters, Madison Winkeler, Ciara N. Richardson

Scholars Week

Transition metal-doped silicon clusters have unique properties and have been studied as building blocks for nanomaterials and microelectronics. Here, the structure and properties of candidate palladium doped silicon clusters (SinPd2: n=1-17) were determined using global optimization techniques on a high performance computing cluster at the San Diego Supercomputing Center. Then geometric structures were further optimized utilizing the B3LYP method with 6-311+G(d) basis sets for silicon and lanl2dz pseudopotential for palladium, followed by the larger DSDPBEP86 method with 6-311+G(2d) basis sets for silicon and SDD pseudopotential for palladium, as implemented in the Gaussian 16 program package. The energetics for each cluster …