Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Chemistry

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Hydrogen Bonding In Small Model Peptides; The Dft And Mp2 Study, Gracie Smith, Martina Kaledin Dec 2022

Hydrogen Bonding In Small Model Peptides; The Dft And Mp2 Study, Gracie Smith, Martina Kaledin

Symposium of Student Scholars

Formamide is a small model compound for the study of the peptide bond. The peptide bond links amino acids together, specifies rigidity to the protein backbone, and includes the essential docking sites for hydrogen-bond-mediated protein folding and protein aggregation, namely, the C=O acceptor and the N-H donor parts. Therefore, the infrared C=O (amide-I) and N-H (amide-A) vibrations provide sensitive and widely used probes into the structure of peptides. This computational chemistry work, we study hydrogen bonds in formamide dimer isomers. We evaluate the accuracy of the density functional theory (DFT) and many-body perturbation theory to the 2nd order (MP2) …


Computer Simulation Of Raman Spectra And Mode Assignment: Application To Methane, Oluwaseun Omodemi, Ciara Tyler, Martina Kaledin Apr 2022

Computer Simulation Of Raman Spectra And Mode Assignment: Application To Methane, Oluwaseun Omodemi, Ciara Tyler, Martina Kaledin

Symposium of Student Scholars

This work uses driven molecular dynamics (DMD) method, in conjunction with an analytic PES calculated using MP2/aug-cc-pVDZ energies to identify and assign Raman vibrational modes of methane. Recently, a new linearized approach was proposed for the Polarizability Tensor Surfaces (PTS) that yields a unique solution to the least-squares fitting problem and provides a competitive level of accuracy compared to the non-linear PTS model. We used the previously reported B3LYP/6-31+G(d) molecular geometries for CH4 and generated a new PTS at the MP2/aug-cc-pVDZ level of theory. The performance of the linearly parametrized functional form for the CH4 PTS is examined. …


Molecular Vibrations Of Symmetric Molecules: Raman Scattering Driven Molecular Dynamics Method, Martina Kaledin, Dominick Pierre-Jacques, Ciara Tyler, Jason Dyke Aug 2021

Molecular Vibrations Of Symmetric Molecules: Raman Scattering Driven Molecular Dynamics Method, Martina Kaledin, Dominick Pierre-Jacques, Ciara Tyler, Jason Dyke

Symposium of Student Scholars

This project focuses on developing a novel computational technique to study molecular vibrations through infrared (IR) and Raman scattering Driven Molecular Dynamics (DMD) method. While the main criterion for IR absorption is a net change in the dipole moment in a molecule as it vibrates, presently we wish to predict and analyze vibrational spectra to study symmetric vibrational modes that are IR inactive or weakly active while strongly Raman active. A newly developed method was tested on CO2, H2O, CH4, and C20 molecules. Students optimized the molecular structures, obtained vibrational frequencies, and IR …


Probing Structure And Energetics Of Proton-Bound Complexes N2…Hco+ And N2h+…Oc Using Computational Chemistry Methods, Antonio Barrios, Dalton Boutwell, Onyi Okere, Monique Olocha, Oluwaseun Omodemi, Alexander Toledo, Antonio Barrios Aug 2021

Probing Structure And Energetics Of Proton-Bound Complexes N2…Hco+ And N2h+…Oc Using Computational Chemistry Methods, Antonio Barrios, Dalton Boutwell, Onyi Okere, Monique Olocha, Oluwaseun Omodemi, Alexander Toledo, Antonio Barrios

Symposium of Student Scholars

N2…HCO+ and N2H+…OC are predicted to exist in interstellar clouds. These complexes involve HCO+ and N2H+ fragments that are bound to N2 and CO, respectively using hydrogen-bonded interaction. The reason these molecules are important is that the existence of nitrogen can be measured indirectly through ion-molecular complexes studied in this work. The measured vibrational spectra of molecules is an excellent way to characterize and detect molecules. We used B3LYP, MP2, and CCSD(T) computational methods to predict the structure and vibrational frequencies of N2…HCO+ and N …


Theoretical Study On The Isomerization And Detection Of N2h+…Oc Complex In Interstellar Clouds, Dalton Boutwell, Martina Kaledin Aug 2021

Theoretical Study On The Isomerization And Detection Of N2h+…Oc Complex In Interstellar Clouds, Dalton Boutwell, Martina Kaledin

Symposium of Student Scholars

In this study, we characterize N2H+…OC linear complex using Driven Molecular Dynamics (DMD) and Vibrational Self-Consistent Field Theory (VSCF) methods due to its relevance in astrochemistry. A central challenge is the detection of the molecular complex in interstellar media (ISM). Computational chemistry approaches can predict vibrational spectra, hence facilitate prediction of its existence and stability in the ISM. N2H+…OC involves the proton transfer process via hydrogen bonding interaction. Proton motion is highly anharmonic, therefore facing a significant challenge to characterize it accurately. Quantum mechanical variational methods are popular among many theoretical chemists …


Applying Machine Learning To Computational Chemistry: Can We Predict Molecular Properties Faster Without Compromising Accuracy?, Hanjing Xu, Pradeep Gurunathan, Lyudmila Slipchenko Aug 2017

Applying Machine Learning To Computational Chemistry: Can We Predict Molecular Properties Faster Without Compromising Accuracy?, Hanjing Xu, Pradeep Gurunathan, Lyudmila Slipchenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Non-covalent interactions are crucial in analyzing protein folding and structure, function of DNA and RNA, structures of molecular crystals and aggregates, and many other processes in the fields of biology and chemistry. However, it is time and resource consuming to calculate such interactions using quantum-mechanical formulations. Our group has proposed previously that the effective fragment potential (EFP) method could serve as an efficient alternative to solve this problem. However, one of the computational bottlenecks of the EFP method is obtaining parameters for each molecule/fragment in the system, before the actual EFP simulations can be carried out. Here we present a …