Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 103

Full-Text Articles in Physical Chemistry

Synthesis Of Cds/Zns Core/Shell Semiconductor Nanoparticles, Austin Skyler Antle Jul 2020

Synthesis Of Cds/Zns Core/Shell Semiconductor Nanoparticles, Austin Skyler Antle

Masters Theses & Specialist Projects

Core/shell semiconductor nanoparticles are of great interest as photocatalysts due to their large surface area per volume and tunable band gaps. The synthesis of core/shell semiconductor nanoparticles has traditionally involved the use of binding ligands to ensure the particles do not aggregate. These binding ligands lower the surface area of the nanoparticles though, reducing their overall efficiency. Ionic liquids have been found to be capable of acting as both solvents and stabilizing agents for synthesis of catalysts with highly active surfaces. Our experiments focus on the synthesis of CdS/ZnS core/shell nanoparticles with the ionic liquid 1-butyl-3-methylimidazolium methyl sulfate, [BMIM][MeSO4], acting …


Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman Sep 2019

Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The photochemistry of pyruvic acid (PA) in aqueous atmospheric particles contributes to the production of secondary organic aerosols. This work investigates the fate of ketyl and acetyl radicals produced during the photolysis (λ ≥ 305 nm) of 5-100 mM PA under steady state [O2(aq)] = 260 μM (1.0 ≤ pH ≤ 4.5) for photon fluxes between 1 and 10 suns. The radicals diffuse quickly into the water/air interface of microbubbles and react with dissolved O2 to produce singlet oxygen (1O2*). Furfuryl alcohol is used to trap and bracket the steady-state production of …


The Effects Of Reactant Concentration And Air Flow Rate In The Consumption Of Dissolved O2 During The Photochemistry Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman Mar 2019

The Effects Of Reactant Concentration And Air Flow Rate In The Consumption Of Dissolved O2 During The Photochemistry Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The sunlight photochemistry of the organic chromophore pyruvic acid (PA) in water generates ketyl and acetyl radicals that contribute to the production and processing of atmospheric aerosols. The photochemical mechanism is highly sensitive to dissolved oxygen content, [O2(aq)], among other environmental conditions. Thus, herein we investigate the photolysis (λ ≥ 305 nm) of 10–200 mM PA at pH 1.0 in water covering the relevant range 0 ≤ [O2(aq)] ≤ 1.3 mM. The rapid consumption of dissolved oxygen by the intermediate photolytic radicals is monitored in real time with a dissolved oxygen electrode. …


Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …


An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman Sep 2018

An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman

Chemistry Faculty Publications

Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. …


Enhanced Acidity Of Acetic And Pyruvic Acids On The Surface Of Water, Alexis J. Eugene, Elizabeth A. Pillar, Agustín J. Colussi, Marcelo I. Guzman Aug 2018

Enhanced Acidity Of Acetic And Pyruvic Acids On The Surface Of Water, Alexis J. Eugene, Elizabeth A. Pillar, Agustín J. Colussi, Marcelo I. Guzman

Chemistry Faculty Publications

Understanding the acid–base behavior of carboxylic acids on aqueous interfaces is a fundamental issue in nature. Surface processes involving carboxylic acids such as acetic and pyruvic acids play roles in (1) the transport of nutrients through cell membranes, (2) the cycling of metabolites relevant to the origin of life, and (3) the photooxidative processing of biogenic and anthropogenic emissions in aerosols and atmospheric waters. Here, we report that 50% of gaseous acetic acid and pyruvic acid molecules transfer a proton to the surface of water at pH 2.8 and 1.8 units lower than their respective acidity constants pKa …


Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman Jul 2018

Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols of variable composition, size, and shape are associated with public health concerns as well as with light-particle interactions that play a role in the energy balance of the atmosphere. Photochemical reactions of 2-oxocarboxylic acids in the aqueous phase are now known to contribute to the total secondary organic aerosol (SOA) budget. This work explores the cross reaction of glyoxylic acid (GA) and pyruvic acid (PA) in water, the two most abundant 2-oxocarboxylic acids in the atmosphere, under solar irradiation and dark thermal aging steps. During irradiation, PA and GA are excited and initiate proton-coupled electron transfer or hydrogen abstraction …


The Cyclodextrin-Perfluorinated Surfactant Host-Guest Complex: Fundamental Studies For Potential Environmental Remediation And Therapeutic Applications, Mary J. Errico May 2018

The Cyclodextrin-Perfluorinated Surfactant Host-Guest Complex: Fundamental Studies For Potential Environmental Remediation And Therapeutic Applications, Mary J. Errico

FIU Electronic Theses and Dissertations

Perfluoroalkyl substances (PFASs) are contaminants of emerging concern, and have been detected in drinking water, wildlife, humans, and the environment. Cyclodextrins (CDs), cyclic sugars composed of glucose monomers, are proposed as a potential remediation strategy. CDs can form host-guest complexes with hydrophobic molecules; this complexation could be capitalized on for PFAS removal and sequestration. These dissertation projects aim to study the fundamental host-guest interactions between a variety of PFASs and CDs for eventual applications in environmental and biological remediation. 1D and 2D Nuclear magnetic resonance (NMR) spectroscopic methods were employed to determine the strength, dynamics, and structure of the CD:PFAS …


Capture And Densification Of Floating Hydrophobic Liquids By Natural Granular Materials, Daria Boglaienko Feb 2017

Capture And Densification Of Floating Hydrophobic Liquids By Natural Granular Materials, Daria Boglaienko

FIU Electronic Theses and Dissertations

Densification and submergence of floating crude oil is proposed as a novel oil spills treatment method. Surface application of dry granular materials (e.g., quartz sand, limestone) on top of a floating oil layer increases the density of the floating oil phase/granule mixture and leads to formation of relatively large and stable aggregates with significant amounts of captured oil. The aggregates separate from the floating hydrophobic phase and settle by gravity. Implementation of this method will reduce the impact radius of a spill and its mobility, preventing direct contamination of beaches, coastal flora and fauna.

The major objective of this research …


Nitrate Radicals And Biogenic Volatile Organic Compounds: Oxidation, Mechanisms And Organic Aerosol, Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Hermann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert Mclaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, Rahul A. Zaveri Feb 2017

Nitrate Radicals And Biogenic Volatile Organic Compounds: Oxidation, Mechanisms And Organic Aerosol, Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Hermann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert Mclaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, Rahul A. Zaveri

Chemistry Faculty Publications

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number …


Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman Apr 2016

Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

The reductive tricarboxylic acid (rTCA) cycle is an important central biosynthetic pathway that fixes CO2 into carboxylic acids. Among the five reductive steps in the rTCA cycle, the two-electron reduction of fumarate to succinate proceeds nonenzymatically on the surface of photoexcited sphalerite (ZnS) colloids suspended in water. This model reaction is chosen to systematically study the surface photoprocess occurring on ZnS in the presence of [Na2S] (1–10 mM) hole scavenger at 15 °C. Experiments at variable pH (5–10) indicate that monodissociated fumaric acid is the primary electron acceptor forming the monoprotic form of succinic acid. The following …


Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman Sep 2015

Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air–solid interface under variable relative humidity (RH = 0–90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10–6 occurs for …


Catechol Oxidation By Ozone And Hydroxyl Radicals At The Air-Water Interface, Elizabeth A. Pillar, Robert C. Camm, Marcelo I. Guzman Nov 2014

Catechol Oxidation By Ozone And Hydroxyl Radicals At The Air-Water Interface, Elizabeth A. Pillar, Robert C. Camm, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air–water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon …


Conversion Of Iodide To Hypoiodous Acid And Iodine In Aqueous Microdroplets Exposed To Ozone, Elizabeth A. Pillar, Marcelo I. Guzman, Jose M. Rodriguez Oct 2013

Conversion Of Iodide To Hypoiodous Acid And Iodine In Aqueous Microdroplets Exposed To Ozone, Elizabeth A. Pillar, Marcelo I. Guzman, Jose M. Rodriguez

Chemistry Faculty Publications

Halides are incorporated into aerosol sea spray, where they start the catalytic destruction of ozone (O3) over the oceans and affect the global troposphere. Two intriguing environmental problems undergoing continuous research are (1) to understand how reactive gas phase molecular halogens are directly produced from inorganic halides exposed to O3 and (2) to constrain the environmental factors that control this interfacial process. This paper presents a laboratory study of the reaction of O3 at variable iodide (I) concentration (0.010–100 μM) for solutions aerosolized at 25 °C, which reveal remarkable differences in the reaction intermediates …


Organics In Environmental Ices: Sources, Chemistry, And Impacts, V. F. Mcneill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, Marcelo I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, D. Voisin Oct 2012

Organics In Environmental Ices: Sources, Chemistry, And Impacts, V. F. Mcneill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, Marcelo I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, D. Voisin

Chemistry Faculty Publications

The physical, chemical, and biological processes involving organics in ice in the environment impact a number of atmospheric and biogeochemical cycles. Organic material in snow or ice may be biological in origin, deposited from aerosols or atmospheric gases, or formed chemically in situ. In this manuscript, we review the current state of knowledge regarding the sources, properties, and chemistry of organic materials in environmental ices. Several outstanding questions remain to be resolved and fundamental data gathered before an accurate model of transformations and transport of organic species in the cryosphere will be possible. For example, more information is needed regarding …


Concentration Effects And Ion Properties Controlling The Fractionation Of Halides During Aerosol Formation, Marcelo I. Guzman, Richa R. Athalye, Jose M. Rodriguez Jun 2012

Concentration Effects And Ion Properties Controlling The Fractionation Of Halides During Aerosol Formation, Marcelo I. Guzman, Richa R. Athalye, Jose M. Rodriguez

Chemistry Faculty Publications

During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO(2), NaNO(3), NaClO(4), and NaIO(4). The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of …


Excellent Adventures In Global Collaboration, Glenn W. "Max" Mcgee, Aracelys Rios Oct 2011

Excellent Adventures In Global Collaboration, Glenn W. "Max" Mcgee, Aracelys Rios

Publications & Research

No abstract provided.


Characterization Of Uranium Species In Sediments Under Iron And Sulfate Reducing Conditions Using Synchrotron-Based Techniques, Don Q. Pham, John Bargar Aug 2011

Characterization Of Uranium Species In Sediments Under Iron And Sulfate Reducing Conditions Using Synchrotron-Based Techniques, Don Q. Pham, John Bargar

STAR Program Research Presentations

Uranium is one of the most common and problematic contaminants at legacy Department of Energy sites. Groundwater contamination is particularly problematic because it occurs at depth, is present in large volumes, and cannot be easily accessed for clean-up. One method of remediation being investigated is the bioreduction of soluble U(VI) to insoluble U(IV) complexes through the in-situ stimulation of metal-reducing bacteria. Understanding the structure of these uranium complexes can help us determine their fate and stability in groundwater and map out the biological process of uranium reduction by metal-reducing bacteria. In this study, we used the synchrotron-based techniques, X-ray absorption …


The Impact Of Driving Conditions On Phev Battery Performance, Nathan Christensen, John Patten, Steven Srivastava, Gary P. Nola Jan 2011

The Impact Of Driving Conditions On Phev Battery Performance, Nathan Christensen, John Patten, Steven Srivastava, Gary P. Nola

Green Manufacturing Research Journal

The battery performance of a modified Prius with a 5 kWh plug-in battery was documented for a year to determine the impact of environmental conditions and user attributes on vehicle performance. Both fuel economy and pure electrical efficiency were compared to ambient temperature. The fuel economy has a positive relationship with ambient temperature until approximately 70˚F where the efficiency begins to drop. Electrical performance has a positive linear relationship with ambient temperature. With the emergence of electric vehicles (EVs) and PHEVs from a variety of automotive manufacturers, information on EV and PHEV performance for consumers will become more important.


Site-Specific Photocatalytic Splitting Of Methanol On Tio2(110), Chuanyao Zhou, Zefeng Ren, Shijing Tan, Zhibo Ma, Xinchun Mao, Dongxu Dai, Hongjun Fan, Xueming Yang, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Zhou Wang, Zhenyu Li, Bing Wang, Jinlong Yang, Jianguo Hou Sep 2010

Site-Specific Photocatalytic Splitting Of Methanol On Tio2(110), Chuanyao Zhou, Zefeng Ren, Shijing Tan, Zhibo Ma, Xinchun Mao, Dongxu Dai, Hongjun Fan, Xueming Yang, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Zhou Wang, Zhenyu Li, Bing Wang, Jinlong Yang, Jianguo Hou

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Clean hydrogen production is highly desirable for future energy needs, making the understanding of molecular-level phenomena underlying photocatalytic hydrogen production both fundamentally and practically important. Water splitting on pure TiO2 is inefficient, however, adding sacrificial methanol could significantly enhance the photocatalyzed H2 production. Therefore, understanding the photochemistry of methanol on TiO2 at the molecular level could provide important insights to its photocatalytic activity. Here, we report the first clear evidence of photocatalyzed splitting of methanol on TiO2 derived from time-dependent two-photon photoemission (TD-2PPE) results in combination with scanning tunneling microscopy (STM). STM tip induced molecular manipulation …


Immobilization Of Fission Iodine By Reaction With A Fullerene Containing Carbon Compound And Insoluble Natural Matrix, Spencer M. Steinberg, Gary Cerefice, David W. Emerson Jan 2008

Immobilization Of Fission Iodine By Reaction With A Fullerene Containing Carbon Compound And Insoluble Natural Matrix, Spencer M. Steinberg, Gary Cerefice, David W. Emerson

Separations Campaign (TRP)

Observations related to the oxidation of iodide to iodine (I2) or hypoiodic acid (HIO) by MnO2 were continued. The formation of triiodide presumable involves the adsorption of iodide onto the MnO2 surface (perhaps displacing a surface hydroxyl group). The iodide should be subsequently oxidized and released back into solution as IOH or I2, which rapidly forms I3 -. The kinetic data has been modeled as a first order process. First order rate constants have been obtained for the formation of iodine in the presence of MnO2. The increase in iodide …


Evaluation Of Fluorapatite As A Waste-Form Material, Dennis W. Lindle, Oliver Hemmers, Dale L. Perry Jan 2008

Evaluation Of Fluorapatite As A Waste-Form Material, Dennis W. Lindle, Oliver Hemmers, Dale L. Perry

Separations Campaign (TRP)

Argonne National Laboratory has proposed a new extraction procedure to handle TRISO-coated fuels, the Fluoride Extraction Process (FLEX). The FLEX process is designed to separate the uranium in the fuel from the actinides and most fission products by taking advantage of the unique properties of uranium hexafluoride (UF6). In the FLEX process, the used TRISO fuel is reacted with zirconium fluoride salt, forming UF6 and the fluoride salts of the actinides and fission products. At process temperatures, the UF6 volatizes into a gas, and is released from the molten salt mixture. This leaves behind the actinides …


Electrochemical Separation Of Curium And Americium, David W. Hatchett, Kenneth Czerwinski Jan 2008

Electrochemical Separation Of Curium And Americium, David W. Hatchett, Kenneth Czerwinski

Separations Campaign (TRP)

The objective was to use electrochemical techniques to develop a thermodynamic understanding of actinide and lanthanide species in RTIL solutions, and use this data to effectively separate species with very similar chemical properties.

In consultation with a DOE collaborator, electrochemical methods and materials were evaluated and used to exploit the thermodynamic differences between similar chemical species enhancing the ability to selectively target and sequester individual species from mixtures. This project, in its third year, successfully completed phases 1, 2. Phase 3 was partially completed. The project expanded to include phase 4.

The following were specific goals for 2007-2008:

• To …


Fundamental Chemistry Of U And Pu In The Tbp-Dodecane-Nitric Acid System, Kenneth Czerwinski Jan 2008

Fundamental Chemistry Of U And Pu In The Tbp-Dodecane-Nitric Acid System, Kenneth Czerwinski

Separations Campaign (TRP)

The research objective is to experimentally evaluate the fundamental speciation of Pu and U in the TBP-dodecane-nitric acid- AHA system and the effect of pertechnetate, specifically:

• To determine the influence of nitrate on the speciation of U and Pu in the TBP-dodecane-nitric acid system. The aqueous and organic speciation of U and Pu are examined as a function of the nitric acid concentration, nitrate concentration, actinide ion concentration, temperature, and time.

• To determine the speciation of U and Pu with AHA in the presence and absence of TBP-dodecane organic phase. The aqueous and organic speciation of U and …


Evaluation Of Fundamental Radionuclide Extraction Data For Urex, Kenneth Czerwinski Jan 2008

Evaluation Of Fundamental Radionuclide Extraction Data For Urex, Kenneth Czerwinski

Separations Campaign (TRP)

The speciation of technetium and actinides in advanced solvent extraction systems is the basis for their manipulation in separations. The ability to understand and predict radionuclide speciation is paramount to successful modeling of proposed separation systems. This project will examine the speciation of radionuclides in different stages of the uranium extraction (UREX) separation scheme, providing data useful to modeling. The areas to be examined include the speciation of uranium and plutonium with tributylphosphate and the kinetics and thermodynamics of lanthanides and actinides in the TALSPEAK (Trivalent actinide lanthanide separation by phosphorous reagent extraction from aqueous complexes) system. The complexation constants …


Criticality Studies For Urex Processes, Denis Beller Jan 2008

Criticality Studies For Urex Processes, Denis Beller

Separations Campaign (TRP)

The completion of criticality experiments for mixtures of transuranic actinides (TRU; includes neptunium, plutonium, americium, and curium) that will be created during the separation of used nuclear fuel may be a requirement in order to construct prototype plants for the Global Nuclear Energy Partnership (GNEP). In this program and the Advanced Fuel Cycle Research and Development (AFC R&D) program that supports it, economic and environmental methods are being developed to reduce the impact of waste from commercial nuclear fuel cycles.

Recycling of used fuel by chemically separating it into U, fission products, and TRU would be the first step in …


F-Element Electrochemistry In Rtil Solutions: Electrochemical Separation Of Lanthanides And Actinides, David W. Hatchett Jan 2008

F-Element Electrochemistry In Rtil Solutions: Electrochemical Separation Of Lanthanides And Actinides, David W. Hatchett

Separations Campaign (TRP)

Electrochemical methods can be used to effectively separate actinide and lanthanide species from complex mixtures. This is based on the unique electrochemical properties of each specific target species. In studies it has been found that, with the exception of Ce, aqueous solutions provide unsuitable electrochemical windows to effectively evaluate the thermodynamic properties that are useful for chemical separations. Therefore, a more novel approach was examined which eliminated the aqueous solution with a room temperature ionic liquid (RTIL) solution. RTIL solutions do not suffer from the side reactions that are prominent in aqueous environments. In addition, the potential window is much …


Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2008

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

This project focuses on the chemical bonding and interface formation of metal fission products with the coating materials used in tri-isotropic (TRISO) fuel particles for gas-cooled reactors. By combining surface- and bulk-sensitive spectroscopic and microscopic methods, intermediate chemical phases at the interface, intermixing/diffusion behavior, and the electronic interface structure for different coating materials and metals are examined.

In detail, the project studies the interface formation of Pd, Cs, and Ag with SiC and pyrolytic carbon. Using SiC single crystals and highly-ordered pyrolytic carbon (HOPG) as substrates, interfaces are prepared under controlled conditions in an ultra-high vacuum environment and are studied …


Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Tyler A. Sullens Jan 2008

Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Tyler A. Sullens

Fuels Campaign (TRP)

One of the original synthetic routes devised for the synthesis of U (III)N involved the entire reaction taking place in liquid ammonia. Several experimental reactions were conducted in an attempt to synthesize the UI3(NH3)x and U(NH2)3(NH3)x precursors of U(III) N. Each attempt involved cleaning of the uranium metal to remove the oxide coating of the metal reagent with 3 washes of concentrated nitric acid, each followed by a rinse with liquid ammonia. Success of this cleaning procedure was varied, with a majority of cleaned metal oxidizing rapidly once …


Ua66/1/5 Icset - Institute For Combustion Science & Environmental Technology, Wku Ogden College Of Science & Engineering Jan 2008

Ua66/1/5 Icset - Institute For Combustion Science & Environmental Technology, Wku Ogden College Of Science & Engineering

WKU Archives Records

History and overview of the work of the WKU Institute for Combustion Science & Environmental Technology through 2008.