Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 165

Full-Text Articles in Physical Chemistry

Detection Of Nitrogen Dioxide Via Graphene-Enhanced Raman Scattering, Spencer Hazeslip May 2023

Detection Of Nitrogen Dioxide Via Graphene-Enhanced Raman Scattering, Spencer Hazeslip

Chemistry & Biochemistry Undergraduate Honors Theses

This paper presents the development of a nitrogen dioxide (NO2) sensor that utilizes the phenomenon of graphene-enhanced Raman scattering (GERS). The sensor consists of monolayer graphene on a silicon wafer, functionalized noncovalently with Copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuTTPc) via the solution soaking method. A custom sensing chamber was constructed to enable Raman spectra to be collected during NO2 exposure. The response of the sensor was found to be linear between 10 and 100 ppm NO2, indicating that it could be used for both detection and quantification. Furthermore, the sensor was shown to be reusable after …


Using Berries To Turn Sunlight Into Electricity: Taking Advice From Mother Nature Because She Has Already Mastered The Art Of Using Solar Energy, Quincy Ross Jan 2023

Using Berries To Turn Sunlight Into Electricity: Taking Advice From Mother Nature Because She Has Already Mastered The Art Of Using Solar Energy, Quincy Ross

Senior Projects Spring 2023

As we try to stop anthropogenic climate change, we need to find energy sources that don’t involve burning fossil fuels. The Earth is constantly being hit with energy in the form of sunlight, we just need to figure out how to use it, thankfully plants have already gotten very good at photosynthesis. Solar energy is being improved at an exciting rate but has some material downsides when it comes to raw material mining. Dye sensitized solar cells, though having a lower efficiency than traditional photovoltaics open up opportunities for improving solar energy in many other aspects, such as reducing material …


Food Waste Storage Gaseous Emissions Detection And Quantification Using Infrared Spectroscopy, Ryley A. Burton-Tauzer Jan 2023

Food Waste Storage Gaseous Emissions Detection And Quantification Using Infrared Spectroscopy, Ryley A. Burton-Tauzer

Cal Poly Humboldt theses and projects

A growing interest in sustainable waste management and the implementation of new policies have prompted a shift towards alternative resource recovery methods for organic waste, including food waste. To effectively assess alternative food waste treatment scenarios, it is important to evaluate the life cycle impacts associated with each scenario. The storage phase of food waste, encompassing its accumulation in kitchens, and storage in bins for collection and transportation, has been overlooked as a source of greenhouse gases in previous studies. This investigation aimed to identify the greenhouse gases emitted during the initial five-day period of low-oxygen storage. An open dynamic …


Coconut Shell Waste Treatment Technology For A Sustainable Waste Utilization: A Case Study Of The Smes In Bohol Village, Indonesia, Wahyu Anggo Rizal, Ria Suryani, Roni Maryana, Dwi Joko Prasetyo, Diah Pratiwi, Yuli Ary Ratnawati, Dini Ariani, Andri Suwanto Dec 2022

Coconut Shell Waste Treatment Technology For A Sustainable Waste Utilization: A Case Study Of The Smes In Bohol Village, Indonesia, Wahyu Anggo Rizal, Ria Suryani, Roni Maryana, Dwi Joko Prasetyo, Diah Pratiwi, Yuli Ary Ratnawati, Dini Ariani, Andri Suwanto

ASEAN Journal of Community Engagement

This project focused on the introduction of liquid smoke and bio briquette manufacturing technology to small and medium enterprises (SMEs) located in Bohol Village, Gunungkidul, Indonesia through technology transfer, training, and mentoring. These SMEs are engaged in the food business with the main product jenang ketan, a traditional food from Gunungkidul, especially in Rongkop District, and very popular among communities around and outside Gunungkidul. The traditional preparation of jenang ketan produces several by-products in the form of waste, which is dominated by coconut shell biomass. The project’s technology transfer was carried out through the procurement of a series of pyrolysis …


Molecular Insights Into The Redox Of Atmospheric Mercury Through Laser Spectroscopy, Rongrong Wu Cohen Dec 2022

Molecular Insights Into The Redox Of Atmospheric Mercury Through Laser Spectroscopy, Rongrong Wu Cohen

Theses and Dissertations

The widespread pollution of mercury motivates research into its atmospheric chemistry and transport. Gaseous elemental mercury (Hg(0)) dominates mercury emission to the atmosphere, but the rate of its oxidation to mercury compound (Hg(II)) plays a significant role in controlling where and when mercury deposits to ecosystems. Atomic bromine is regarded as the main oxidant for Hg(0) oxidation, known to initiate the oxidation via a two-step process in the atmosphere – formation of BrHg (R1) and subsequent reactions of BrHg with abundant free radicals Y, i.e., NO2, HOO, etc. (R2), where the reaction of BrHg +Y could also lead to the …


Modeling Vitexin And Isovitexin Flavones As Corrosion Inhibitors For Aluminium Metal, Abdullahi Muhammad Ayuba, Umaru Umar Aug 2021

Modeling Vitexin And Isovitexin Flavones As Corrosion Inhibitors For Aluminium Metal, Abdullahi Muhammad Ayuba, Umaru Umar

Karbala International Journal of Modern Science

Theoretically, the aluminium corrosion inhibitive performance of vitexin (VTX) and isovitexin (SVT) were evaluated with a view of establishing the mechanism of the inhibition process. Calculations which include the consideration of several global descriptors were studied to describe and correlate the reactivity of the molecules with the computed descriptors. First and second-order condensed Fukui functions were employed to analyze local reactivity parameters, while simulations involving the adsorbed molecules on Al (1 1 0) surface were conducted through quench dynamic simulations and the mechanism of physical adsorption was established with SVT relatively been a better inhibitor on Al surface than VTX.


Dissolved Organic Carbon And The Potential Role To Stream Acidity In The Great Smoky Mountains National Park, Jason R. Brown Aug 2021

Dissolved Organic Carbon And The Potential Role To Stream Acidity In The Great Smoky Mountains National Park, Jason R. Brown

Masters Theses

A substantial societal shift towards environmental awareness has focused research efforts on the impacts of pollution on natural landscapes. Improvements to pollutant regulations and technology have resulted in sizeable reductions of atmospheric deposition of anthropogenic acids, especially nitrates and sulfates, which has altered the role of these ions in the environment. As such, understandings of environmental chemistry dynamics have required regular updating.

Through the National Park Service Vital Signs monitoring program, increases in precipitation pH observed in Great Smoky Mountains National Park (GRSM) has been attributed to the reduction of inorganic acid concentrations. Unfortunately, these improvements have not been uniformly …


Fullerene And Tungsten Oxide Nanostructures-Based Electrocatalysts For All-Vanadium Redox Flow Batteries, Farah Ahmed El Diwany Jun 2021

Fullerene And Tungsten Oxide Nanostructures-Based Electrocatalysts For All-Vanadium Redox Flow Batteries, Farah Ahmed El Diwany

Theses and Dissertations

The vanadium redox flow battery (VRFB) is one of the most promising long-term energy storage solutions mainly due to its long service life and the independence of its energy capacity on power rating and vice versa. However, its relatively high capital cost limits its widespread deployment. Economic analysis reveals that a high-power density VRFB with decreased cell stack size can dramatically reduce the cost. The energy efficiency of a VRFB primarily depends on the kinetics of vanadium redox reactions that take place in the stack. Therefore, studying the effect of surface chemistry of electrodes on the kinetics of each …


Carbon Dioxide And Particulate Matter Concentration On Hampton Roads Air Quality, Gregory Hubbard Jan 2021

Carbon Dioxide And Particulate Matter Concentration On Hampton Roads Air Quality, Gregory Hubbard

OUR Journal: ODU Undergraduate Research Journal

Hampton Roads has been a maritime crossroads for the last 400 years. Industrialization has impacted the coastal region for the last 250 years. The expansion of the Port of Virginia in 2019 has created dense traffic in the region resulting in impacts to air quality. Two waste products that affect humans are particulate matter and carbon dioxide. Both respective emissions can cause adverse effects on humans, such as asthma, some lung cancers, and other respiratory distress. Scientists and health practitioners are studying the effects of particulate matter on human health. Hampton Roads, in particular, because of its unique location on …


The Quantitative Assessment Of Pond Scum: An Examination Of The Biogeochemistry Of Phosphorus Cycling In The Belgrade Lakes, Abbey M. Sykes Jan 2021

The Quantitative Assessment Of Pond Scum: An Examination Of The Biogeochemistry Of Phosphorus Cycling In The Belgrade Lakes, Abbey M. Sykes

Honors Theses

The internal recycling phosphorus in freshwater lake bottom sediments represents a significant source of hypolimnetic phosphorus (P) release for many of Maine’s lakes. In summer months, Maine lakes often thermally stratify and the lake hypolimnion develops anoxia, leading to a reduction in redox potential at the sediment-water interface. These reducing conditions facilitate the reductive dissolution of ferric iron, and, since phosphorus is often present in freshwater lake sediments as solid FeOOH-PO4 complexes, results in release of soluble phosphorus into the water column. Our current study presents field and laboratory data from sediment fractionation extractions designed to quantify concentrations of …


Synthesis Of Cds/Zns Core/Shell Semiconductor Nanoparticles, Austin Skyler Antle Jul 2020

Synthesis Of Cds/Zns Core/Shell Semiconductor Nanoparticles, Austin Skyler Antle

Masters Theses & Specialist Projects

Core/shell semiconductor nanoparticles are of great interest as photocatalysts due to their large surface area per volume and tunable band gaps. The synthesis of core/shell semiconductor nanoparticles has traditionally involved the use of binding ligands to ensure the particles do not aggregate. These binding ligands lower the surface area of the nanoparticles though, reducing their overall efficiency. Ionic liquids have been found to be capable of acting as both solvents and stabilizing agents for synthesis of catalysts with highly active surfaces. Our experiments focus on the synthesis of CdS/ZnS core/shell nanoparticles with the ionic liquid 1-butyl-3-methylimidazolium methyl sulfate, [BMIM][MeSO4], acting …


Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr Dec 2019

Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr

Civil and Environmental Engineering Theses and Dissertations

The development of effective treatment processes for the removal contaminants, such as fluoride and heavy metals, from polluted water have been urgently needed due to serious environmental health and safety concerns. In this dissertation, a variety of materials including various (hydro)oxide nanomaterials, biochars and surface modified biochar were studied to evaluate their effectiveness and mechanism on removing fluoride or mixed heavy metals from water.

In the Chapter 2, this study investigated the adsorptive removal of fluoride from water using various (hydro)oxide nanomaterials, focusing on ferrihydrite, hydroxyapatite (HAP) and brucite, which have the potential to be used as sorbents for surface …


Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman Sep 2019

Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The photochemistry of pyruvic acid (PA) in aqueous atmospheric particles contributes to the production of secondary organic aerosols. This work investigates the fate of ketyl and acetyl radicals produced during the photolysis (λ ≥ 305 nm) of 5-100 mM PA under steady state [O2(aq)] = 260 μM (1.0 ≤ pH ≤ 4.5) for photon fluxes between 1 and 10 suns. The radicals diffuse quickly into the water/air interface of microbubbles and react with dissolved O2 to produce singlet oxygen (1O2*). Furfuryl alcohol is used to trap and bracket the steady-state production of …


The Effects Of Reactant Concentration And Air Flow Rate In The Consumption Of Dissolved O2 During The Photochemistry Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman Mar 2019

The Effects Of Reactant Concentration And Air Flow Rate In The Consumption Of Dissolved O2 During The Photochemistry Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The sunlight photochemistry of the organic chromophore pyruvic acid (PA) in water generates ketyl and acetyl radicals that contribute to the production and processing of atmospheric aerosols. The photochemical mechanism is highly sensitive to dissolved oxygen content, [O2(aq)], among other environmental conditions. Thus, herein we investigate the photolysis (λ ≥ 305 nm) of 10–200 mM PA at pH 1.0 in water covering the relevant range 0 ≤ [O2(aq)] ≤ 1.3 mM. The rapid consumption of dissolved oxygen by the intermediate photolytic radicals is monitored in real time with a dissolved oxygen electrode. …


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …


An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman Sep 2018

An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman

Chemistry Faculty Publications

Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. …


Enhanced Acidity Of Acetic And Pyruvic Acids On The Surface Of Water, Alexis J. Eugene, Elizabeth A. Pillar, Agustín J. Colussi, Marcelo I. Guzman Aug 2018

Enhanced Acidity Of Acetic And Pyruvic Acids On The Surface Of Water, Alexis J. Eugene, Elizabeth A. Pillar, Agustín J. Colussi, Marcelo I. Guzman

Chemistry Faculty Publications

Understanding the acid–base behavior of carboxylic acids on aqueous interfaces is a fundamental issue in nature. Surface processes involving carboxylic acids such as acetic and pyruvic acids play roles in (1) the transport of nutrients through cell membranes, (2) the cycling of metabolites relevant to the origin of life, and (3) the photooxidative processing of biogenic and anthropogenic emissions in aerosols and atmospheric waters. Here, we report that 50% of gaseous acetic acid and pyruvic acid molecules transfer a proton to the surface of water at pH 2.8 and 1.8 units lower than their respective acidity constants pKa …


Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman Jul 2018

Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols of variable composition, size, and shape are associated with public health concerns as well as with light-particle interactions that play a role in the energy balance of the atmosphere. Photochemical reactions of 2-oxocarboxylic acids in the aqueous phase are now known to contribute to the total secondary organic aerosol (SOA) budget. This work explores the cross reaction of glyoxylic acid (GA) and pyruvic acid (PA) in water, the two most abundant 2-oxocarboxylic acids in the atmosphere, under solar irradiation and dark thermal aging steps. During irradiation, PA and GA are excited and initiate proton-coupled electron transfer or hydrogen abstraction …


Desalination Concentrate Disposal: Ecological Effects And Sustainable Solutions, Ryan Hanley Jun 2018

Desalination Concentrate Disposal: Ecological Effects And Sustainable Solutions, Ryan Hanley

Global Honors Theses

Freshwater availability is a growing global concern, and desalination is often presented as the solution, but from this important technology comes issues of toxic waste. Ecosystems are delicate areas that contain species adapted to that specific location, and any chemical or physical changes can disrupt the fitness of species. The concentrate byproduct waste from desalination plants is toxic to species if the concentrate is not compatible with the receiving water body. A critical review of scientific articles, industry-leading books, conversations with industry experts, and information from the American Membrane Technology Association conference was used to analyze the current knowledge. Species …


Investigation On The Dissociative Photoionization Mechanism Of Furfural, Investigation Of The Absolute Photoionization Cross Sections Of Three Potential Propargylic Fuels, And Ab Initio Analysis On Potential Superbases Of Several Hyperlithiated Species: Li3f2o And Li3f2(Oh)N (N = 1, 2, 3), Matthew Winfough May 2018

Investigation On The Dissociative Photoionization Mechanism Of Furfural, Investigation Of The Absolute Photoionization Cross Sections Of Three Potential Propargylic Fuels, And Ab Initio Analysis On Potential Superbases Of Several Hyperlithiated Species: Li3f2o And Li3f2(Oh)N (N = 1, 2, 3), Matthew Winfough

Master's Theses

This thesis presents the study photoionization cross sections of three different propargylic biofuels; dipropargyl ether, propargyl alcohol, and propargylamine, in chlorine radical-initiated combustion experiments at the Chemical Dynamics Beamline (9.0.2) at the Advanced Light Source of the Ernest Orlando Berkeley National Laboratory in Berkeley, California. Additionally, the unimolecular dissociative photoionization mechanism of furfural was studied using photoelectron photoionization coincidence (PEPICO) spectroscopy at the vacuum ultraviolet beamline at the Swiss Light Source of the Paul Scherrer Institut in Villigen, Switzerland. Dissociation products and mechanisms for furfural were identified over a photon energy range of 10.9 to 14.5 eV. Lastly, a study …


The Cyclodextrin-Perfluorinated Surfactant Host-Guest Complex: Fundamental Studies For Potential Environmental Remediation And Therapeutic Applications, Mary J. Errico May 2018

The Cyclodextrin-Perfluorinated Surfactant Host-Guest Complex: Fundamental Studies For Potential Environmental Remediation And Therapeutic Applications, Mary J. Errico

FIU Electronic Theses and Dissertations

Perfluoroalkyl substances (PFASs) are contaminants of emerging concern, and have been detected in drinking water, wildlife, humans, and the environment. Cyclodextrins (CDs), cyclic sugars composed of glucose monomers, are proposed as a potential remediation strategy. CDs can form host-guest complexes with hydrophobic molecules; this complexation could be capitalized on for PFAS removal and sequestration. These dissertation projects aim to study the fundamental host-guest interactions between a variety of PFASs and CDs for eventual applications in environmental and biological remediation. 1D and 2D Nuclear magnetic resonance (NMR) spectroscopic methods were employed to determine the strength, dynamics, and structure of the CD:PFAS …


Photoelectrochemical Studies On Non-Noble Metal Based Catalysts Towards Tandem Solar Water Splitting, Arun Siddarth Sridhar May 2018

Photoelectrochemical Studies On Non-Noble Metal Based Catalysts Towards Tandem Solar Water Splitting, Arun Siddarth Sridhar

Dissertations

Photoelectrochemical (PEC) water splitting makes direct use of solar energy incident on semiconductor photoelectrodes, and it is a convenient, economic option to produce high purity hydrogen at low temperatures. The use of multiple light absorbers can increase overall solar energy utilization and provide a solution to the trade-off between overall band gap and band edge positioning of photoelectrodes specific to solar water oxidation and water reduction. The study of non-noble metal based catalysts for hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) are essential for economic practical commercialization of photo-electrolyzers. This dissertation focuses on the use of a variety …


Development Of Photocatalysts Supported On Graphitic Carbon Nitride For The Degradation Of Organic Water Pollutants, Atanu Giri Jan 2018

Development Of Photocatalysts Supported On Graphitic Carbon Nitride For The Degradation Of Organic Water Pollutants, Atanu Giri

Theses and Dissertations

Graphitic carbon nitride (g-C3N4) heterojunction composites with the semiconducting metal oxides, CeO2, ZnO and TiO2 are prepared in situ by co-calcination of the precursor materials or by a solvothermal method. The structural, morphological and the optical properties of the prepared materials are studied using various microscopy and spectroscopy techniques. The synthesized composite materials, CeO2/g-C3N4, ZnO/g-C3N4 and TiO2/g-C3N4 are more efficient in the photocatalytic degradation of the water pollutants indigo carmine (IC) and atrazine than the pure metal oxide, g-C …


Experimental Evaluation Of Uranyl Transport Into Mesoporous Silica Gel Using Fluorescence, Brandon M. Dodd Jan 2018

Experimental Evaluation Of Uranyl Transport Into Mesoporous Silica Gel Using Fluorescence, Brandon M. Dodd

Theses and Dissertations

This research investigated parameters that can affect the use of nanoporous silica gel as a media for accumulating a detectable amount of uranium. The unique fluorescence of the Uranyl (UO22+) ion was used to evaluate the transport kinetics and accumulation within silica gel in a static fluid and under pressure driven flow. The addition of fluid flow decreased the time constant from on the order of an hour to approximately 2s with a very low fluid velocity of 0.36cm/s. The 0.36cm/s fluid velocity was found to be the critical velocity above which there was no gain in …


Capture And Densification Of Floating Hydrophobic Liquids By Natural Granular Materials, Daria Boglaienko Feb 2017

Capture And Densification Of Floating Hydrophobic Liquids By Natural Granular Materials, Daria Boglaienko

FIU Electronic Theses and Dissertations

Densification and submergence of floating crude oil is proposed as a novel oil spills treatment method. Surface application of dry granular materials (e.g., quartz sand, limestone) on top of a floating oil layer increases the density of the floating oil phase/granule mixture and leads to formation of relatively large and stable aggregates with significant amounts of captured oil. The aggregates separate from the floating hydrophobic phase and settle by gravity. Implementation of this method will reduce the impact radius of a spill and its mobility, preventing direct contamination of beaches, coastal flora and fauna.

The major objective of this research …


Nitrate Radicals And Biogenic Volatile Organic Compounds: Oxidation, Mechanisms And Organic Aerosol, Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Hermann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert Mclaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, Rahul A. Zaveri Feb 2017

Nitrate Radicals And Biogenic Volatile Organic Compounds: Oxidation, Mechanisms And Organic Aerosol, Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Hermann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert Mclaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, Rahul A. Zaveri

Chemistry Faculty Publications

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number …


C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski Jan 2017

C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski

Wojciech Budzianowski

-


Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski Jan 2017

Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman Apr 2016

Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

The reductive tricarboxylic acid (rTCA) cycle is an important central biosynthetic pathway that fixes CO2 into carboxylic acids. Among the five reductive steps in the rTCA cycle, the two-electron reduction of fumarate to succinate proceeds nonenzymatically on the surface of photoexcited sphalerite (ZnS) colloids suspended in water. This model reaction is chosen to systematically study the surface photoprocess occurring on ZnS in the presence of [Na2S] (1–10 mM) hole scavenger at 15 °C. Experiments at variable pH (5–10) indicate that monodissociated fumaric acid is the primary electron acceptor forming the monoprotic form of succinic acid. The following …