Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Materials Chemistry

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Source Data For Self-Spinning Filaments For Autonomously Linked Microfibers, Dylan M. Barber, Todd S. Emrick, Gregory Grason, Alfred Crosby Jan 2022

Source Data For Self-Spinning Filaments For Autonomously Linked Microfibers, Dylan M. Barber, Todd S. Emrick, Gregory Grason, Alfred Crosby

Data and Datasets

Filamentous bundles are ubiquitous in Nature, achieving highly adaptive functions and structural integrity from assembly of diverse mesoscale supramolecular elements. Engineering routes to synthetic, topologically integrated analogs demands precisely coordinated control of multiple filaments’ shapes and positions, a major challenge when performed without complex machinery or labor-intensive processing. Here, we demonstrate a photocreasing design that encodes local curvature and twist into mesoscale polymer filaments, enabling their programmed transformation into target 3-dimensional geometries. Importantly, patterned photocreasing of filament arrays drives autonomous spinning to form linked filament bundles that are highly entangled and structurally robust. In individual filaments, photocreases unlock paths 16 …


Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca Jul 2019

Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca

Doctoral Dissertations

This dissertation describes the synthesis and characterization of novel monomers and (co)polymer zwitterions that incorporate trialkylsulfonium cations. The novel materials presented herein constitute a unique type of polymer zwitterions that exhibit salt- and temperature-dependent water solubility as well as inherent reactivity. The behavior of these polymers in aqueous solutions, as nanostructures, and at liquid-liquid interfaces was studied; in all cases, the inherent reactivity of the polymers was harnessed towards the fabrication of novel polymers and soft materials. Following an introductory chapter, Chapter 2 describes the synthesis of sulfonium sulfonate monomers and polymer zwitterions. Both styrenic and methacrylic monomers were synthesized …


Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout Nov 2017

Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout

Doctoral Dissertations

Direct cytoplasmic delivery of gene editing nucleases such CRISPR/Cas9 systems and therapeutic proteins provides enormous opportunities in curing human genetic diseases, and assist research in basic cell biology. One approach to attain such a goal is through engineering nanotechnological tools to mimic naturally existing intra- and extracellular protein delivery/transport systems. Nature builds transport systems for proteins and other biomolecules through evolution-derived sophisticated molecular engineering. Inspired by such natural assemblies, I employed molecular engineering approaches to fabricate self-assembled nanostructures to use as intracellular protein delivery tools. Briefly, proteins and gold nanoparticles were co-engineered to carry complementary electrostatic recognition elements. When these …


Supramolecular Strategies For The Generation Of Nanoparticle Assemblies And Biomolecular Thin Films, Bradley P. Duncan Mar 2016

Supramolecular Strategies For The Generation Of Nanoparticle Assemblies And Biomolecular Thin Films, Bradley P. Duncan

Doctoral Dissertations

The conceptual framework of supramolecular chemistry elucidates a powerful set of strategies for chemists to generate functional nanomaterials based on intermolecular forces. My research focused on tuning the molecular interactions of nanoscale components to create larger structures with enhanced properties. In one approach, I developed and optimized an additive-free, nanoimprint lithography-based methodology to generate stable thin films from a variety of proteins. The generalized process retains intrinsic properties of the protein as demonstrated by selective cellular adhesion. The heat and pressure of the nanoimprinting process induces slight structural reorganization of the peptide side chains to yield highly stable films held …


Design, Synthesis, And Bio Relevant Applications Of Zwitterionic Amphiphilic Macromolecular Assemblies, Rajasekhar Reddy Rami Reddy Mar 2015

Design, Synthesis, And Bio Relevant Applications Of Zwitterionic Amphiphilic Macromolecular Assemblies, Rajasekhar Reddy Rami Reddy

Doctoral Dissertations

Supramolecular nanoassemblies capable of reducing non-specific interactions with biological macromolecules, such as proteins, are of great importance for various biological applications especially for targeted drug delivery therapeutics. Recently, zwitterionic materials have been shown to reduce non-specific interactions with biomolecules, owing both to their charge neutrality and their ability to form strong hydration layer around zwitterions via electrostatic interactions. This dissertation focuses on design, synthesis, thorough characterization, and applications of zwitterionic amphiphilic dendrimers and polymeric materials. Firstly, A new triazole-based zwitterionic moiety was conceived and incorporated as the hydrophilic functionality in facially amphiphilic dendrons. Self-assembly characteristics and the structural and functional …


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Mar 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials. This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively …


Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres Aug 2014

Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres

Doctoral Dissertations

Proteins have the capacity to bind specific sets of compounds known as ligands, these are small molecules with a recurrent theme in their molecular design that is a characteristic exploited here to (i) identify particular affinities of small molecules for proteins with the aim of using them as ligands, inhibitors, or targeting moieties in more complex systems by means of a methodology that screens small molecules based on protein affinity; (ii) decorate a self-assembling supramolecular system at different positions, making it responsive to a complementary protein with the aim of exploring differences in disassembly and sensitivity of the release of …