Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Materials Chemistry

Green Synthesis, Photocatalytic And Photoelectrochemical Performance Of Au-Graphene Nanocomposite, Mohammad Mansoob Khan Dr, Mohammad Ehtisham Khan, M. H. Cho Mar 2015

Green Synthesis, Photocatalytic And Photoelectrochemical Performance Of Au-Graphene Nanocomposite, Mohammad Mansoob Khan Dr, Mohammad Ehtisham Khan, M. H. Cho

Dr. Mohammad Mansoob Khan

A simplistic and environment friendly approach using electrochemically active biofilms (EABs) was developed for the synthesis of Au-Graphene (Au-G) nanocomposite without the use of surfactants or capping agents. The as-prepared Au-G nanocomposite was characterized by X-ray diffraction, diffuse reflectance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and transmission electron microscopy. In this study, the anchoring of gold nanoparticles (AuNPs) on graphene sheets was achieved using an EAB. The EAB assists in the bio-reduction of Au3+ to Au0, and the AuNPs prevent the aggregation of graphene sheets and keep them apart because of the decrease in attractive forces between the …


Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho Dec 2013

Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

The development of coupled photoactive materials (metal/semiconductor) has resulted in significant advancements in heterogeneous visible light photocatalysis. This work reports the novel biogenic synthesis of visible light active Ag–ZnO nanocomposite for photocatalysis and photoelectrode using an electrochemically active biofilm (EAB). The results showed that the EAB functioned as a biogenic reducing tool for the reduction of Ag+, thereby eliminating the need for conventional reducing agents. The as-prepared Ag–ZnO nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic experiments showed that the Ag–ZnO nanocomposite possessed excellent visible light photocatalytic activity …


Highly Visible Light Active Ag@Tio2 Nanocomposites Synthesized By Electrochemically Active Biofilm: A Novel Biogenic Approach, Mohammad Mansoob Khan Dr, Sajid A. Ansari, J. Lee, M. H. Cho Mar 2013

Highly Visible Light Active Ag@Tio2 Nanocomposites Synthesized By Electrochemically Active Biofilm: A Novel Biogenic Approach, Mohammad Mansoob Khan Dr, Sajid A. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Titanium dioxide (TiO2) nanoparticles were decorated with different amounts of silver nanoparticles (AgNPs) using an electrochemically active biofilm (EAB), which is a biogenic approach that leads to the formation of Ag@TiO2 nanocomposites. UV-vis spectroscopy, photoluminescence, x-ray diffraction and electron microscopy showed AgNPs, 2 - 5 nm in size, well-dispersed and anchored to the TiO2 surface and overall synthesis of Ag@TiO2 nanocomposites. The photocatalytic performance of the as-synthesized Ag@TiO2 nanocomposites was evaluated in terms of their efficiency for the photodecomposition of methylene blue (MB) in an aqueous solution under visible light irradiation. The nanocomposites showed exceptionally high photodecomposition efficiency (> 7 …