Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 53

Full-Text Articles in Materials Chemistry

Preparation And Process Optimization Of Cathode Materials For Lithium-Sulfur Batteries, Kai Wu Dec 2020

Preparation And Process Optimization Of Cathode Materials For Lithium-Sulfur Batteries, Kai Wu

Journal of Electrochemistry

Lithium-sulfur (Li-S) batteries represent promising candidates for next-generation energy storage system due to their high energy density and low material cost. However, the industrial application of Li-S batteries remains challenges because of the shuttle effect from lithium polysulfides and the lack of facial routes for Li-S battery preparation. To solve these problems, a cathode consisting of different commercial carbon materials, namely, acetylene black (SP), Ketjen Black (KB) and carbon nanotube (CNT), with sulfur (S) is prepared separately for Li-S battery. After the process of 8-h ball milling for KB/S composite, together with the polyvinyl pyrrolidone (PVP) binder, the cathode could …


Preparations And Sodium Storage Properties Of Ni3S2@Cnt Composite, Ming-Tao Duan, Yan-Shuang Meng, Hong-Shuai Zhang Dec 2020

Preparations And Sodium Storage Properties Of Ni3S2@Cnt Composite, Ming-Tao Duan, Yan-Shuang Meng, Hong-Shuai Zhang

Journal of Electrochemistry

Transition metal sulfides (TMSs)-based electrode materials with highly reversible sodium storage have attracted extensive attentions as one of the most prospective electrode materials for sodium ion batteries (SIBs). However, low cycling stability and rate property caused by large volume expansion and poor electronic conductivity during the electrochemical reaction still hamper their further practical application. In this work, in-situ encapsulated Ni3S2 nanoparticles in carbon nanotubes (Ni3S2@CNT) have been successfully fabricated as an anode material for high-performance SIBs by a one-step solid-phase calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), …


Effect Of Stereotaxically-Constructed Graphene On The Negative Electrode Performance Of Lead-Acid Batteries, Pin-Song Chen, Yi-Tao Hu, Xin-Yi Zhang, Pei-Kang Shen Dec 2020

Effect Of Stereotaxically-Constructed Graphene On The Negative Electrode Performance Of Lead-Acid Batteries, Pin-Song Chen, Yi-Tao Hu, Xin-Yi Zhang, Pei-Kang Shen

Journal of Electrochemistry

With the advantages of high ratio surface area, excellent conductivity and high stability, the stereotaxically-constructed graphene (SCG) material was added to the negative active material (NAM) of lead-acid battery for improving battery performance. XRD, SEM and cyclic voltammetry tests were carried out to analyze the influence of SCG on negative active material. It is found that the conversion efficiency of lead sulfate to lead in the negative active material added with SCG material was higher than that of control group, and the particle size of the lead sulfate obtained after the discharge reaction was smaller, which are favorable factors for …


Core-Shell Structured Ru@Ptru Nanoflower Electrocatalysts Toward Alkaline Hydrogen Evolution Reaction, Xue-Liang Wang, Yuan-Yuan Cong, Chen-Xi Qiu, Sheng-Jie Wang, Jia-Qi Qin, Yu-Jiang Song Dec 2020

Core-Shell Structured Ru@Ptru Nanoflower Electrocatalysts Toward Alkaline Hydrogen Evolution Reaction, Xue-Liang Wang, Yuan-Yuan Cong, Chen-Xi Qiu, Sheng-Jie Wang, Jia-Qi Qin, Yu-Jiang Song

Journal of Electrochemistry

Water electrolysis for hydrogen production is beneficial for solving the problem of energy crisis and environmental issues. It is necessary to study highly active and cost-effective catalysts toward hydrogen evolution reaction (HER) to reduce the consumption of noble metals. Herein, we report the synthesis of core-shell structured Ru@Pt0.24Ru nanoflowers electrocatalyst by stepwise reduction of Ru and Pt precursors in the mixture of oleylamine and benzyl alcohol at 160 oC. The average diameter of the resultant Ru@Pt0.24Ru was 16.5±4.0 nm with a bulk atomic ratio between Pt and Ru of 0.24:1 and a surface ratio of 3.3:1 …


Preparations And Photoelectrochemical Performances Of Rgo-Tio2 Nanotubes Arrays, Ze-Yang Zhang, Lan Sun, Chang-Jian Lin Dec 2020

Preparations And Photoelectrochemical Performances Of Rgo-Tio2 Nanotubes Arrays, Ze-Yang Zhang, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Decorating TiO2 nanotube arrays with RGO to improve the photocatalytic activity of TiO2 nanotube arrays has been reported. For the reported RGO-TiO2 nanotube arrays, TiO2 nanotube arrays were prepared by anodizing the high-purity Ti foil in an organic electrolyte for multiple-step treatments, while RGO were deposited on TiO2 nanotube arrays by using cyclic voltammetry or other electrical reduction methods. To enhance the reduction degree and the coverage of RGO on the resultant RGO-TiO2 nanotube arrays, in this work, the one-step electrochemical anodization in hydrofluoric acid was used to fabricate TiO2 nanotube arrays with …


Effect Of Reaction Conditions On Cu⁃Catalyzed Co2 Electroreduction, Chang Zhu, Wei Chen, Yan-Fang Song, Xiao Dong, Gui-Hua Li, Wei Wei, Yu-Han Sun Dec 2020

Effect Of Reaction Conditions On Cu⁃Catalyzed Co2 Electroreduction, Chang Zhu, Wei Chen, Yan-Fang Song, Xiao Dong, Gui-Hua Li, Wei Wei, Yu-Han Sun

Journal of Electrochemistry

Electrochemical conversion of carbon dioxide (CO2) driven by renewable electricity that can meet both carbon emission reduction and renewable energy utilization has been rapidly developed in recent years. Copper (Cu) catalyst has long been a promising candidate for CO2 electroreduction applications because of its natural abundance and specific capability of producing a substantial amount of C2 products. However, various metallic Cu electrodes reported have been significantly influenced by the adsorption of certain cation/anion ions, resulting in wide-span catalytic activities and selectivity for various products. In addition, a recent report demonstrated that by virtue of gas-diffusion flow cell …


Numerical Simulations Of Current And Temperature Distribution Of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based On The Theory Of Electric-Chemical-Thermal Coupling, Cheng-Rong Yu, Jian-Guo Zhu, Cong-Ying Jiang, Yu-Chen Gu, Ye-Xin Zhou, Zhuo-Bin Li, Rong-Min Wu, Zheng Zhong, Wan-Bing Guan Dec 2020

Numerical Simulations Of Current And Temperature Distribution Of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based On The Theory Of Electric-Chemical-Thermal Coupling, Cheng-Rong Yu, Jian-Guo Zhu, Cong-Ying Jiang, Yu-Chen Gu, Ye-Xin Zhou, Zhuo-Bin Li, Rong-Min Wu, Zheng Zhong, Wan-Bing Guan

Journal of Electrochemistry

Solid oxide fuel cell (SOFC) is a high-efficient clean conversion device for future energy management. Because of the low antioxidant reduction ability and complex thermal stress, the structure of traditional asymmetrical thin anode-supported planar SOFC is easily to be broken under stack operating conditions. To overcome these defects, a new complete symmetrical SOFC based on double-sided cathodes was developed. To study the influences of gas flow direction and current collection mode on the cell performance inside stack, a numerical model was established by finite element method based on the theory of electro-thermo-chemo multiphysical coupling. By applying this model, the molar …


Degradation And Thermal Characteristics Of Lini0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery After Different State Of Charge Ranges Cycling, Cun Wang, Wei-Jiang Zhang, Teng-Fei He, Bo Lei, You-Jie Shi, Yao-Dong Zheng, Wei-Lin Luo, Fang-Ming Jiang Dec 2020

Degradation And Thermal Characteristics Of Lini0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery After Different State Of Charge Ranges Cycling, Cun Wang, Wei-Jiang Zhang, Teng-Fei He, Bo Lei, You-Jie Shi, Yao-Dong Zheng, Wei-Lin Luo, Fang-Ming Jiang

Journal of Electrochemistry

The LiNi0.8Co0.15Al0.05O2 (NCA) cathode exhibits high energy density and large reversible capacity, which plays an essential role in the field of electric vehicles (EVs). However, low capacity retention and poor thermal stability limit its application. Few literatures are found for the capacity degradation mechanism of NCA/graphite batteries at home and abroad. The different state of charge (SOC) ranges cycle degradation behaviors of 18650-type NCA/graphite (2.4 Ah) battery were studied in this paper. The SOC ranges considered were 0% ~ 20% (low), 20% ~ 70% (medium), 70% ~ 100% (high), and 0% ~ 100% …


Step-By-Step Modification Of Graphite Felt Electrode For Vanadium Redox Flow Battery, Jing-Yuan Lou, Dong-Jiang You, Xue-Jing Li Dec 2020

Step-By-Step Modification Of Graphite Felt Electrode For Vanadium Redox Flow Battery, Jing-Yuan Lou, Dong-Jiang You, Xue-Jing Li

Journal of Electrochemistry

As a well-known electrode material of the vanadium redox flow battery (VRFB),graphite felt electrode is the frequently-used electrode material in VRFB, and its low electrochemical activity is one of the key factors for the low power density of VRFB. In this work, we proposed a step-by-step modification method, which used KMnO4 to oxidize graphite felt first and then placed in an activation solution to excite its reactivity, to improve the electrochemical performance of the graphite felt electrode. According to the results from cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) characterizations …


Research Progress Of Sulfur Cathode Catalytic Conversions For Lithium-Sulfur Batteries, Qin-Jun Shao, Jian Chen Oct 2020

Research Progress Of Sulfur Cathode Catalytic Conversions For Lithium-Sulfur Batteries, Qin-Jun Shao, Jian Chen

Journal of Electrochemistry

The electrochemical reduction of sulfur (S) takes place through multistep reactions when S is used as a cathode material. The complete discharge of S to form final product lithium sulfide (Li2S) is a two-electron reaction. The formation of low-order lithium polysulfides (LiPS) needs to overcome certain energy barriers. And the reduction of Li2S2 to Li2S is the rate-limited step. The reaction kinetic of sulfur cathode is the critical key to determine the electrochemical performance of Li-S batteries, such as specific energy, specific power and low temperature performance, etc. Accelerating the rate-limited step kinetics …


A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang Oct 2020

A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang

Journal of Electrochemistry

The alkaline polymer electrolyte fuel cell (APEFC) has made appreciable progress in recent years but is still suffering performance loss during discharge with air as the oxidant. Several theories have been suggested to interpret the loss. However, efforts are still needed to reach a clear quantitative understanding. Based on the major experimental findings in combination with thermodynamics and kinetics of the reactions involved in the anode, this paper presents a model featuring layered carbonization in the anode and relevant grouped equations. The simulation results generated from the latter are compared with experiments, and possible principles to suppress the performance loss …


Porous-Electrode Theory Of Lithium Ion Battery: Old Paradigm And New Challenge, Xiao-Xiao Wang, Zi-Rui Zhou, Qiang Shan, Zeng-Ming Zhang, Jun Huang, Yu-Wen Liu, Sheng-Li Chen Oct 2020

Porous-Electrode Theory Of Lithium Ion Battery: Old Paradigm And New Challenge, Xiao-Xiao Wang, Zi-Rui Zhou, Qiang Shan, Zeng-Ming Zhang, Jun Huang, Yu-Wen Liu, Sheng-Li Chen

Journal of Electrochemistry

A critical review on the porous electrode theory developed by Newman and his colleagues is presented. We propose several ideas for further development of this theory by analyzing its limitations. The classical Newman theory does not consider ion steric effect in describing ion transport in electrolyte solutions, which can be amended by a newly developed ion-vacancy coupled charge transfer model for ion transport in concentrated solutions. Ion transport in solid particles of active materials is essentially an ion-electron coupled transport process, and its rationality is verified by comparing the calculated and experimental diffusion coefficients of Li + ion in intercalation …


Facile Synthesis Of Nitrogen-Doped Graphene-Like Active Carbon Materials For High Performance Lithium-Sulfur Battery, Quan-Hua Meng, Wen-Wen Deng, Chang-Ming Li Oct 2020

Facile Synthesis Of Nitrogen-Doped Graphene-Like Active Carbon Materials For High Performance Lithium-Sulfur Battery, Quan-Hua Meng, Wen-Wen Deng, Chang-Ming Li

Journal of Electrochemistry

Lithium-sulphur (Li-S) battery is regarded as a promising energy storage device because of its high theoretical capacity. However, the low S utilization and short cycling life limit the commercial applications. In this work, nitrogen-doped graphene-like carbon (NGC) materials were synthesized by simply pyrolyzing and carbonizing the mixture of melamine (C3H6N6) and L-cysteine (C3H7NO2S). The graphene-like structure in NGC effectively buffered the volume change of S during the discharge/charge process and improved the cycling stability. Meanwhile, nitrogen-containing functional groups in NGC facilitated the transportation of ions and suppressed the …


Progress And Prospects On Multifunctional Coating Separators For Lithium-Sulfur Battery, Zhuang-Zhuang Wei, Nan-Xiang Zhang, Feng Wu, Ren-Jie Chen Oct 2020

Progress And Prospects On Multifunctional Coating Separators For Lithium-Sulfur Battery, Zhuang-Zhuang Wei, Nan-Xiang Zhang, Feng Wu, Ren-Jie Chen

Journal of Electrochemistry

The development of advanced energy storage systems is crucial to meet the growing demand for electric vehicles, portable devices and renewable energy storage. Lithium-sulfur (Li-S) batteries, with their advantages of high specific energy, low cost of raw materials and environmental friendliness, are hotspots in the research field of new high performance batteries. However, there are still many problems which hinder the practical applications of lithium-sulfur batteries, such as the shuttle effect of soluble polysulfide intermediates, the growth of lithium dendrites, and the thermal stability and safety of lithium-sulfur batteries during use. The design of multifunctional coating separator is one of …


Electrochemical Engineering Of Carbon Nanodots, Lei Bao, Dai-Wen Pang Oct 2020

Electrochemical Engineering Of Carbon Nanodots, Lei Bao, Dai-Wen Pang

Journal of Electrochemistry

Carbon nanodots (CNDs), as zero-dimensional carbonaceous fluorescent nanomaterials, are valuable add-ons to the current cohorts of fluorescent nanoparticles. The fine control over the size and the surface is the key to gain designated photophysical properties of CNDs as well as empowers CNDs in many applications. Herein, a series of electrochemical strategies to manipulate the size and the surface of CNDs and to identify the surface structures was presented. Accordingly, the understandings on the originals of photoluminescence as well as the pathways of electrochemiluminescence of CNDs were revealed. These studies demonstrated that electrochemical methods were easy to operate, cost-effective and efficient …


Licoo2 As Sulfur Host To Enhance Cathode Volumetric Capacity For Lithium-Sulfur Battery, Lu Wang, Xue-Ping Gao Oct 2020

Licoo2 As Sulfur Host To Enhance Cathode Volumetric Capacity For Lithium-Sulfur Battery, Lu Wang, Xue-Ping Gao

Journal of Electrochemistry

Lithium-sulfur battery is one of the most promising secondary battery systems due to its super high theoretical gravimetric and volumetric energy densities (2600 Wh·kg-1 and 2800 Wh·L-1, respectively). However, the practical volumetric capacity of sulfur cathode is still unsatisfied due to the overuse of low-density host materials, such as carbon nanomaterials. Herein, commercial LiCoO2 with the high tap density of 2.94 g·cm-3 was used as the host material to build high density sulfur-based composite and compact electrode for increasing the volumetric capacity. Obviously, the tap density of the as-prepared S/LiCoO2 composite was 1.90 g·cm-3, larger than that of …


Research Progress Of Key Components In Lithium-Sulfur Batteries, Jia-Jia Chen, Quan-Feng Dong Oct 2020

Research Progress Of Key Components In Lithium-Sulfur Batteries, Jia-Jia Chen, Quan-Feng Dong

Journal of Electrochemistry

Due to the much higher theoretical specific capacity and energy density than the ones of traditional lithium ion battery, Li-S batteries have long been at the pinnacle in the realms of high-energy Li-metal batteries. However, the complicated electrochemical reactions on the sulfur cathode and Li anode, induced by the thermodynamic and kinetic behaviors of lithium polysulfides, are the intrinsic bottleneck to realize the full potential of Li-S batteries for practical application. In this review, we firstly discuss the roles, and thermodynamic and kinetic behaviors of polysulfides in the charging and discharging processes of Li-S batteries. Then, the functional design and …


Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li Aug 2020

Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li

Journal of Electrochemistry

Electrochemical carbon dioxide reduction (CO2RR) is an appealing approach to convert atmospheric CO2 to value-added fuels and industrial chemicals, and may play an important role during the transition to a carbon-neutral economy. In order to make this technology commercially viable, it is essential to pursue CO2RR in flow reactors instead of conventional H-type reactors, and to combine electrocatalyst development with system engineering. In this review, we overview the cell configurations and performance advantages of the two types of flow reactors, analyze their shortcomings, and discuss the effects of their different components including gas diffusion electrode …


Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang Aug 2020

Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang

Journal of Electrochemistry

The electrochemical conversion of CO2 to chemical raw material for further utilization shows promising future to alleviate global warming and realize carbon cycle in nature, which is of great significance to the green chemistry and sustainable development. This review briefly introduces the advantages of CO2 electrochemical reduction (CO2ER) and its basic reaction principles, and summarizes the recent progress in a series of activity enhancement strategies based on nanosized metal catalysts. The influences of alloy effect, interface engineering, synergistic effect, surface defect engineering and support effect on the catalytic performance of nanosized metals for CO2ER …


Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao Aug 2020

Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao

Journal of Electrochemistry

Zinc-air battery has attracted great attention from researchers due to its high energy density and power density, which is expected to be widely used in energy conversion and storage. Air electrode as the core area of oxygen catalytic reaction is the focus of the entire zinc-air battery research. Recently, many research achievements have been made in non-noble metal bifunctional catalysts/electrodes with high activity, low cost and abundant species. In this review, we mainly focus on the reaction mechanism and the recent progress in non-noble metal oxide catalyst, carbon-based catalyst, and carbon-based transition metal compound composite and self-supporting electrode. In addition, …


Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Aug 2020

Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

The development of highly active and stable catalysts toward oxygen reduction reaction (ORR) has been facing severe challenges. In recent years, pyrolytic M-N-C catalysts and metal-organic framework derived materials made the performance of non-noble metal catalysts greatly improved, however, the molecular and atomic level understanding in the reaction active sites and the mechanism are still lacking. Here, we summarize the recent research progress made in the Changchun Institute of Applied Chemistry. We present a microporous metal-organic-framework confined strategy toward the preferable formation of ORR catalysts. Firstly, we studied the active site and proposed a new active site structure for the …


Electrolyte Tailoring For Electrocatalytic Reduction Of Stable Molecules, Jin-Han Li, Fang-Yi Cheng Aug 2020

Electrolyte Tailoring For Electrocatalytic Reduction Of Stable Molecules, Jin-Han Li, Fang-Yi Cheng

Journal of Electrochemistry

Reduction of stable molecules such as CO2 and N2 is important process in electrochemical energy conversion and storage technologies for electrofuels production. However, for the inert nature of CO2/N2 molecule and competitive proton reduction in conventional aqueous electrolytes, selective electrochemical carbon/nitrogen fixation suffers from high overpotential, low reaction rate and low selectivity. While addressing these issues has witnessed substantial advances in electrocatalysts, much less attention has been placed on the electrolytes, which play an important role in regulating the local environment and thus the performance of catalysts under operating conditions. Rational design of electrolytes has …


Fuel Cell Performance Of Non-Precious Metal Based Electrocatalysts, Yan-Feng Zhang, Fei Xiao, Guang-Yu Chen, Min-Hua Shao Aug 2020

Fuel Cell Performance Of Non-Precious Metal Based Electrocatalysts, Yan-Feng Zhang, Fei Xiao, Guang-Yu Chen, Min-Hua Shao

Journal of Electrochemistry

The commercialization of proton exchange membrane fuel cells (PEMFCs) is hindered by high cost and low durability of Pt based electrocatalysts. Developing efficient and durable non-precious metal catalysts is a promising approach to addressing these conundrums. Among them, transition metals dispersed in a nitrogen (N)-doped carbon support (M-N-C) show good oxygen reduction reaction activity. This article reviews recent progress in M-N-C catalysts development, focusing on the catalysts design, membrane electrode assembly fabrication, fuel cell performance, and durability testing. Template-assisted approach is an efficient way to synthesize M-N-C materials with homogeneously dispersed single atom active site and reduced metal particles, carbides …


Preparations Of Nano-MnoX/Ti Electrocatalytic Membrane Electrode For Catalytic Oxidation Of Cyclohexane Using Intermittent Electrodeposition, Xue Zhou, Hong Wang, Zhen Yin, Yu-Jun Zhang, Jian-Xin Li Jun 2020

Preparations Of Nano-MnoX/Ti Electrocatalytic Membrane Electrode For Catalytic Oxidation Of Cyclohexane Using Intermittent Electrodeposition, Xue Zhou, Hong Wang, Zhen Yin, Yu-Jun Zhang, Jian-Xin Li

Journal of Electrochemistry

Cyclohexanone and cyclohexanol (KA oil) obtained from highly selective oxidation of cyclohexane (CHA) show important industrial value and application prospects. In this work, the intermittent electrodeposition was developed to prepare nano-MnOx catalyst loading porous tubular titanium membrane electrode (MnOx/Ti), which was employed to constitute an electro-catalytic membrane reactor (ECMR) for the oxidation of cyclohexane to produce cyclohexanol and cyclohexanone. The surface morphology, crystal structure and electrochemical property of the catalysts were characterized by FESEM, XRD and electrochemical workstation, respectively. The results show that the catalyst prepared by the intermittent electrodeposition displayed nano-flower-like γ-MnO2. Compared …


The Interaction Of Ternary Components Of Ionic Liquid Gel Polymer Electrolytes For Lithium Metal Batteries, Xiao-Na Pan, Li-Lai Liu, Zhi-Pu Wang, Dan Wang, Yun Li, Pei-Xia Yang, Jin-Qiu Zhang, Mao-Zhong An Jun 2020

The Interaction Of Ternary Components Of Ionic Liquid Gel Polymer Electrolytes For Lithium Metal Batteries, Xiao-Na Pan, Li-Lai Liu, Zhi-Pu Wang, Dan Wang, Yun Li, Pei-Xia Yang, Jin-Qiu Zhang, Mao-Zhong An

Journal of Electrochemistry

Ionically conductive gel polymer electrolyte is an excellent candidate due to its inflammable, nonvolatile and high thermal stability as compared to commercial liquid electrolytes which are usually flammable, volatile, and containing toxic organic solution as solvent, The synthesis and application of ionic gel polymer electrolytes in lithium ion/metal batteries have been previously reported. However, the interaction effects of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) ionic liquid (as plasticizer) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) on PVDF-HFP polymer remain unclear. In this work, the molecular structure of ionic liquid gel polymer electrolyte (ILGPE) composed of PP13TFSI, LiTFSI and PVDF-HFP was studied by Raman spectroscopy and Fourier-transform …


Electrochemical Oxidation Of Metal Chromium In Odium Hydroxide Aqueous Solution, Ping Han, Hai-Tao Feng, Ya-Ping Dong, Sen Tian, Bo Zhang, Wu Li Jun 2020

Electrochemical Oxidation Of Metal Chromium In Odium Hydroxide Aqueous Solution, Ping Han, Hai-Tao Feng, Ya-Ping Dong, Sen Tian, Bo Zhang, Wu Li

Journal of Electrochemistry

Ferrochrome electrolysis technology is a novel method for preparing sodium chromate (Na2CrO4). Although the method performs well at soft reaction conditions, controllable process, environmentally friendly production process, etc., the electrochemical oxidation process of metal chromium in NaOH aqueous electrolyte is still unclear. At present, there are few research articles about specific electrochemical oxidation of metal chromium in NaOH aqueous electrolyte. It is, therefore, meaningful to carry out the research in electrochemical oxidation mechanism of chromium. The electrochemical oxidation of metal chromium in 0.01 mol·L-1 ~ 10 mol·L-1 NaOH aqueous electrolytes at 20 °C was studied by …


Ordered Mesoporous Carbon/Graphene/Nickel Foam For Flexible Dopamine Detection With Ultrahigh Sensitivity And Selectivity, Lai-Yu Wang, Xin Xi, Dong-Qing Wu, Xiong-Yu Liu, Wei Ji, Rui-Li Liu Jun 2020

Ordered Mesoporous Carbon/Graphene/Nickel Foam For Flexible Dopamine Detection With Ultrahigh Sensitivity And Selectivity, Lai-Yu Wang, Xin Xi, Dong-Qing Wu, Xiong-Yu Liu, Wei Ji, Rui-Li Liu

Journal of Electrochemistry

Flexible biosensors have received intensive attentions for their potential applications in wearable electronics. To obtain flexible electrochemical dopamine (DA) sensors, the ordered mesoporous carbon/graphene/nickel foam (OMC/G/Ni) composite was fabricated in this work via the growth of graphene on Ni foam by chemical vapor deposition, and the formation of the OMC layer followed by the carbonization of co-assembled resol and block polymer., The monolithic Ni foam in the resultant OMC/G/Ni electrode provided an interconnected metal framework with high conductivity and good flexibility, while the OMC layer with the vertically aligned mesopore arrays rendered the composite a large electroactive surface with highly …


Poly(Ethylene Oxide) Based Polymer Electrolytes For All-Solid-State Li-S Batteries, Xue Li, Zheng-Liang Gong Jun 2020

Poly(Ethylene Oxide) Based Polymer Electrolytes For All-Solid-State Li-S Batteries, Xue Li, Zheng-Liang Gong

Journal of Electrochemistry

In recent years, research on lithium-sulfur (Li-S) batteries has received much attention because the sulfur positive electrode and the lithium metal negative electrode produce a high theoretical specific capacity (lithium metal ~ 3800 mAh·g-1, sulfur ~ 1675 mAh·g-1). In addition, sulfur is considered to be the most promising cathode material for secondary lithium batteries, due to its advantages of low price and environmental friendly. However, the practical application of conventional liquid Li-S batteries is still obstructed by several critical issues, such as lithium ploysulfides shuttle effect, long-term stability of lithium metal anode with organic liquid electrolytes, and the safety concerns …


Synthesis And Raman Study Of Hollow Core-Shell Ni1.2Co0.8P@N-C As An Anode Material For Sodium-Ion Batteries, Jia-Hui Chen, Xiao-Bin Zhong, Chao He, Xiao-Xiao Wang, Qing-Chi Xu, Jian-Feng Li Jun 2020

Synthesis And Raman Study Of Hollow Core-Shell Ni1.2Co0.8P@N-C As An Anode Material For Sodium-Ion Batteries, Jia-Hui Chen, Xiao-Bin Zhong, Chao He, Xiao-Xiao Wang, Qing-Chi Xu, Jian-Feng Li

Journal of Electrochemistry

With the increasing demand for large-scale energy storage, great progress has been made in discovering new advanced energy storage materials. Sodium-ion batteries (SIBs) have attracted much attention in recent years due to their use of abundant sodium resources and their comparable electrochemical capacity to lithium-ion batteries (LIBs). In this paper, we developed novel hollow core-shell Ni-Co bimetallic phosphide nanocubes with N-doped carbon coatings (Ni1.2Co0.8P@N-C) as the anode material for SIBs. The material was synthesized through a low-temperature phosphorization method using resorcinol formaldehyde (RF) resin coating with a Ni-Co Prussian blue analogue (PBA) as a template and …


Stability Studies For A Membrane Electrode Assembly Type Co2 Electro-Reduction Electrolytic Cell, Qing Mao, Bing-Yu Li, Wei-Yun Jing, Jian Zhao, Song Liu, Yan-Qiang Huang, Zhao-Long Du Jun 2020

Stability Studies For A Membrane Electrode Assembly Type Co2 Electro-Reduction Electrolytic Cell, Qing Mao, Bing-Yu Li, Wei-Yun Jing, Jian Zhao, Song Liu, Yan-Qiang Huang, Zhao-Long Du

Journal of Electrochemistry

Electro-catalytic reduction is an efficient way to achieve resourcable transformation of CO2, which is one of the important techniques to solve the global environmental problems originated from excessive CO2 emission. In this study, a membrane electrode assembly(MEA) type CO2 electro-reduction electrolytic cell was constucted, which enables CO2 feeding and real-time KHCO3 aqueous updating on both sides of the cathode gas diffusion electrode (GDE). By means of the electrolytic cell, effects of KHCO3 concentration and updating inside the liquid electrolytic chamber on CO2 electro-reduction activity, production distribution and stability were investigated. The experimental …