Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Materials Chemistry

Water-Soluble Palladium, Copper, And Nickel Catalysts And Their Formation In Ligand-Free Suzuki-Miyaura Cross-Coupling Reactions, Priya Karna Jan 2023

Water-Soluble Palladium, Copper, And Nickel Catalysts And Their Formation In Ligand-Free Suzuki-Miyaura Cross-Coupling Reactions, Priya Karna

Theses and Dissertations--Chemistry

Transition-metal catalyzed Suzuki-Miyaura (SM) cross coupling is a powerful synthetic method for constructing carbon-carbon and carbon-heteroatom bonds in designing organic compounds, agrochemicals, pharmaceuticals, and precursors for materials. However, the nature of catalysis and identity of the transition metal catalysts used in these reactions remain under debate or unknown. This dissertation reports the studies of three metals: Pd, Cu, and Ni. Pd-nanocluster catalysts and their formation in ligand-free SM reactions with Pd(II) nitrate as a precatalyst was investigated. The catalysts are water-soluble neutral Pd tetramer and trimer in their singlet electronic states as identified by UV-Vis absorption spectroscopy and are formed …


Uncovering Structure-Property Relationships Of Inorganic Nanomaterials Via Transmission Electron Microscopy, Melonie Thomas Jan 2020

Uncovering Structure-Property Relationships Of Inorganic Nanomaterials Via Transmission Electron Microscopy, Melonie Thomas

Theses and Dissertations--Chemistry

The rapid increase of research in nanoscale devices and nanotechnology in the past few decades has revealed that nanomaterials may possess exceptional properties that are significantly different from the bulk counterpart, due to local rearrangements of the atoms at surfaces and defects. Transmission electron microscopy (TEM) is an indispensable tool when it comes to the characterization of nanomaterials, primarily due to its ability to resolve the local-structure of materials at the atomic-scale. To study dynamic processes, however, regular TEM experiments are inadequate, as they provide only before and after information rather than the real-time data essential to understanding a reaction …


Synthesis Of Metal Oxide Surface And Interface Arrays By A Combined Solid-Liquid- Vapor/Vapor-Liquid-Solid Approach, Alexandra J. Riddle Jan 2020

Synthesis Of Metal Oxide Surface And Interface Arrays By A Combined Solid-Liquid- Vapor/Vapor-Liquid-Solid Approach, Alexandra J. Riddle

Theses and Dissertations--Chemistry

This project was motivated by an in situ heating experiment in the transmission electron microscope (TEM) in which gold (Au) nanoparticles were observed to dissolve tin dioxide (SnO2) nanowires (NWs) under vacuum. The explanation for this observation was that the high-temperature and low-pressure environment of the TEM caused the reverse reaction of the well-known vapor-liquid-solid (VLS) method commonly used to grow NWs. In the VLS process, a metal catalyst absorbs reactant vapor until it becomes supersaturated. The precipitation of the NW occurs at the liquid-solid interface, which ceases when there is no longer reactant vapor, and the diameter of the …


Designing Metal-Halide Perovskites With Enhanced Optical Properties And Stability Using Surface Ligands, Md Aslam Uddin Jan 2020

Designing Metal-Halide Perovskites With Enhanced Optical Properties And Stability Using Surface Ligands, Md Aslam Uddin

Theses and Dissertations--Chemistry

Metal-halide perovskites (MHPs), with formula ABX3 (A = methylammonium, formamidinium, or Cs+; B = Sn2+ or Pb2+; and X = Cl-, Br-, or I-) are versatile and attractive materials because of their tunable optical and electronic properties. These optical and electronic properties include tunable direct band gaps, high absorption coefficients, low exciton binding energies, relatively high electron and hole mobilities, narrow emission line-widths, and high photoluminescence (PL) quantum yields (ΦPL). Much of the initial excitement around organic metal-halide perovskites focused on their application in photovoltaics (PVs) …


Identification Of Adsorbate Ft-Ir Bands Using In-Situ Techniques: Pd Speciation And Adsorption Chemistry Of Pd-Zeolites For Passive Nox Adsorption, Robert Bruce Pace Iii Jan 2020

Identification Of Adsorbate Ft-Ir Bands Using In-Situ Techniques: Pd Speciation And Adsorption Chemistry Of Pd-Zeolites For Passive Nox Adsorption, Robert Bruce Pace Iii

Theses and Dissertations--Chemistry

To meet increasingly stringent automotive emissions standards, further improvements in catalytic converter design are necessary. Current automotive catalyst systems are effective at eliminating emission of nitrogen oxides (NOx) once the catalyst reaches operational temperature (~200 °C). NOx emitted at lower catalyst temperatures now comprises most of the NOx released during a typical test cycle. Referred to as “the cold start problem” this issue has come to the forefront of automotive catalyst development, as mitigating these emissions is necessary to further reduce automotive emissions. Passive NOx adsorbers present an appealing solution to the cold start problem, …


Catalyzed Synthesis Of Zinc Clays By Prebiotic Central Metabolites, Marcelo I. Guzman, Ruixin Zhou, Kaustuv Basu, Hyman Hartman, Christopher J. Matocha, S. Kelly Sears, Hajatollah Vali Apr 2017

Catalyzed Synthesis Of Zinc Clays By Prebiotic Central Metabolites, Marcelo I. Guzman, Ruixin Zhou, Kaustuv Basu, Hyman Hartman, Christopher J. Matocha, S. Kelly Sears, Hajatollah Vali

Chemistry Faculty Publications

How primordial metabolic networks such as the reverse tricarboxylic acid (rTCA) cycle and clay mineral catalysts coevolved remains a mystery in the puzzle to understand the origin of life. While prebiotic reactions from the rTCA cycle were accomplished via photochemistry on semiconductor minerals, the synthesis of clays was demonstrated at low temperature and ambient pressure catalyzed by oxalate. Herein, the crystallization of clay minerals is catalyzed by succinate, an example of a photoproduced intermediate from central metabolism. The experiments connect the synthesis of sauconite, a model for clay minerals, to prebiotic photochemistry. We report the temperature, pH, and concentration dependence …


Deconvolving The Steps To Control Morphology, Composition, And Structure, In The Synthesis Of High-Aspect-Ratio Metal Oxide Nanomaterials, Lei Yu Jan 2017

Deconvolving The Steps To Control Morphology, Composition, And Structure, In The Synthesis Of High-Aspect-Ratio Metal Oxide Nanomaterials, Lei Yu

Theses and Dissertations--Chemistry

Metal oxides are of interest not only because of their huge abundance but also for their many applications such as for electrocatalysts, gas sensors, diodes, solar cells and lithium ion batteries (LIBs). Nano-sized metal oxides are especially desirable since they have larger surface-to-volume ratios advantageous for catalytic properties, and can display size and shape confinement properties such as magnetism. Thus, it is very important to explore the synthetic methods for these materials. It is essential, therefore, to understand the reaction mechanisms to create these materials, both on the nanoscale, and in real-time, to have design control of materials with desired …


Interactions Of Compounds Containing Group 12 And 16 Elements, Daniel Burriss Jan 2017

Interactions Of Compounds Containing Group 12 And 16 Elements, Daniel Burriss

Theses and Dissertations--Chemistry

The focus of this dissertation is on the interactions of compounds containing group 12 and 16 elements. This work is presented in three major parts. First, the interaction of the synthetic dithiol N,N’-bis(2-mercaptoethyl)isophthalamide), abbreviated BDTH2, with selenite. Second, the interaction of cysteine with Cd(II) and the biologically relevant Cd-Cysteine crystal structure. Third, the green synthesis of CdSe quantum dots (QDs).

The interaction of BDTH2 with selenite is different from the interactions with other metals and metalloids previously studied. Under ambient conditions, BDTH2 is oxidized to the disulfide, BDT(S-S), while selenite is reduced to elemental selenium. However, …


Exploring The Structure And Properties Of Nanomaterials Using Advanced Electron Microscopy Techniques, Yao-Jen Chang Jan 2017

Exploring The Structure And Properties Of Nanomaterials Using Advanced Electron Microscopy Techniques, Yao-Jen Chang

Theses and Dissertations--Chemistry

Nowadays people are relying on all kinds of electronic devices in their daily life. All these devices are getting smaller and lighter with longer battery life due to the improvement of nanotechnology and materials sciences. Electron microscopy (EM) plays a vital role in the evolution of materials characterization which shapes the technology in today’s life. In electron microscopy, electron beam is used as the illumination source instead of visible light used in traditional optical microscopy, the wavelength of an electron is about 105 times shorter than visible light. By taking this advantage, the resolving power and magnification are greatly …


Heterogeneous Base Metal Catalyzed Oxidative Depolymerization Of Lignin And Lignin Model Compounds, John Adam Jennings Jan 2017

Heterogeneous Base Metal Catalyzed Oxidative Depolymerization Of Lignin And Lignin Model Compounds, John Adam Jennings

Theses and Dissertations--Chemistry

With the dwindling availability of petroleum, focus has shifted to renewable energy sources such as lignocellulosic biomass. Lignocellulosic biomass is composed of three main constituents, lignin, cellulose and hemicellulose. Due to the low value of cellulosic ethanol, utilization of the lignin component is necessary for the realization of an economically sustainable biorefinery model. Once depolymerized, lignin has the potential to replace petroleum-derived molecules used as bulk and specialty aromatic chemicals. Numerous lignin depolymerization strategies focus on cleavage of β-aryl ether linkages, usually at high temperatures and under reductive conditions.

Alternatively, selective benzylic oxidation strategies have recently been explored for …


Arsenic Removal With A Dithiol Ligand Supported On Magnetic Nanoparticles, John Hamilton Walrod Ii Jan 2017

Arsenic Removal With A Dithiol Ligand Supported On Magnetic Nanoparticles, John Hamilton Walrod Ii

Theses and Dissertations--Chemistry

Exposure to arsenic (As) in water, the ubiquitous toxin that poses adverse health risks to tens of millions, is the result of both anthropogenic and geochemical mobilization. Despite recent publicity and an increased public awareness, the dangers associated with arsenic exposure rank among the top priorities of public health agencies globally. Existing sequestration applications mainly include reductions and adsorption with zero-valent metals and their oxides. The performance of adsorption media is known to preferentially favor aqueous As(V) over As(III) due to the charge of the dissolved oxyanion. Magnetic nanoparticles (MNP) have been the focus of multidisciplinary research efforts for the …


Organometallic Materials: Ferroceno[C]Thiophenes And 1,2-Bisthienylmetallocenes, Surya R. Banks Jan 2016

Organometallic Materials: Ferroceno[C]Thiophenes And 1,2-Bisthienylmetallocenes, Surya R. Banks

Theses and Dissertations--Chemistry

Development of synthetic routes toward two general organometallic frameworks was undertaken. The first project involved synthetic attempts of substituted and unsubstituted ferroceno[c]thiophene while the second one was the synthesis of 1,2-dithienylmetallocenes. The long-term goal of this work is to lay the foundations for study of electronic, electrochromic, redox, and optical properties of thiophene-based materials integrated with organometallic systems such as ferrocene, ruthenocene and cymantrene. The synthetic pathway for the target molecule in the first project involved converting 1,2-bis(hydroxymethyl)ferrocene to 1,2-bis(thiouroniummethyl)ferrocene with thiourea under acidic conditions. Refluxing the salt in base followed by acidification resulted in 1,2-bis(mercaptomethyl)ferrocene, which is …


The Optimization Of The Synthesis And Characterization Of Vapor-Liquid-Solid Grown Zno Nanowires, Silas R. Fiefhaus Jan 2016

The Optimization Of The Synthesis And Characterization Of Vapor-Liquid-Solid Grown Zno Nanowires, Silas R. Fiefhaus

Theses and Dissertations--Chemistry

ZnO nanowires are a promising material with great semiconductor properties. ZnO nanowires were prepared by carbothermal reduction and vapor-liquid-solid growth mechanism. Altering a variety of parameters ranging from mole to mole ratio of ZnO to C all the way to gas flow rate was examined. The nanowires were then characterized and their morphology examined under a SEM to observe what effect the parameter had on the morphology of the nanowires. From the experiments and the parameters tested it was observed that in order to produce the highest quality straight nanowires one should use a mole to mole ratio of ZnO …


Using Conventional And In Situ Transmission Electron Microscopy Techniques To Understand Nanoscale Crystallography, Bethany M. Hudak Jan 2016

Using Conventional And In Situ Transmission Electron Microscopy Techniques To Understand Nanoscale Crystallography, Bethany M. Hudak

Theses and Dissertations--Chemistry

Transmission electron microscopy (TEM) is a powerful tool for studying solidstate crystalline systems. With the advances in aberration correction, monochromation, and in situ capabilities, these microscopes are now more useful for addressing fundamental materials chemistry problems than ever before. This dissertation will illustrate the ways in which I have been using high-resolution imaging and in situ heating in the TEM during my Ph.D. research to investigate unique solid state chemistry questions.

This dissertation will focus on four unique crystal systems: thermoelectric skutterudite crystals, vapor-liquid-solid (VLS) grown nanowires, and hafnium dioxide nanorods. Although these systems are very different from one another, …


Ferrocene-Fused Derivatives Of Acenes, Tropones And Thiepins, Bidhya L. Maharjan Jan 2015

Ferrocene-Fused Derivatives Of Acenes, Tropones And Thiepins, Bidhya L. Maharjan

Theses and Dissertations--Chemistry

This research project is concentrated on tuning the properties of small organic molecules, namely polyacenes, tropones and thiepins, by incorporating redox-active transition metal centers π-bonded to terminal cyclopentadienyl ligands. Organometallic-fused acenequinones, tropones, thiepins and cyclopentadiene-capped polyacenes were synthesized and characterized. This work was divided into three parts: first, the synthesis of ferrocene-fused acenequinones, cyclopentadiene-capped acenequinones and their subsequent aromatization to polyacenes; second, the synthesis of ferrocene-fused tropones, thiotropones and tropone oxime; and third, the synthesis of ferrocene-fused thiepins. Ferrocene-fused quinones are the precursors to our target complexes. Our synthetic route to ferrocenequinones involved two-fold aldol condensation between 1,2-diformylferrocene and naphthalene-1,4-diol …


Physicochemical Modifications And Applications Of Carbon Nano-Onions For Electrochemical Energy Storage, Rituraj Borgohain Jan 2013

Physicochemical Modifications And Applications Of Carbon Nano-Onions For Electrochemical Energy Storage, Rituraj Borgohain

Theses and Dissertations--Chemistry

Carbon nano-onions (CNOs), concentrically multilayered fullerenes, are prepared by several different methods. We are studying the properties of two specific CNOs: A-CNOs and N-CNOs. A-CNOs are synthesized by underwater arc discharge, and N-CNOs are synthesized by high-temperature graphitization of commercial nanodiamond. In this study the synthesis of A-CNOs are optimized by designing an arc discharge aparatus to control the arc plasma. Moreover other synthesis parameters such as arc power, duty cycles, temperature, graphitic and metal impurities are controlled for optimum production of A-CNOs. Also, a very efficient purification method is developed to screen out A-CNOs from carboneseous and metal impurities. …


Preparation, Characterization And Applications Of Functionalized Carbon Nano-Onions, Mahendra K. Sreeramoju Jan 2013

Preparation, Characterization And Applications Of Functionalized Carbon Nano-Onions, Mahendra K. Sreeramoju

Theses and Dissertations--Chemistry

Carbon nano-onions (CNOs) discovered by Ugarte in 1992 are multi-layered fullerenes that are spherical analogs of multi-walled carbon nanotubes with diameters varying from 6 nm to 30 nm. Among the various methods of synthesis, CNOs prepared by graphitization of nanodiamonds (N-CNOs) and underwater electric arc of graphite rods (A-CNOs) are the subject of our research. N-CNOs are considered as more reactive than A-CNOs due to their smaller size, high curvature and surface defects.

This dissertation focuses on structural analysis and surface functionalization of N- CNOs with diameters ranging from 6—10 nm. Synthetic approaches such as oleum- assisted oxidation, Freidel-Crafts acylation …