Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Materials Chemistry

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


Transition Metal Phosphides For High Performance Electrochemical Energy Storage Devices, Amina Saleh Jan 2022

Transition Metal Phosphides For High Performance Electrochemical Energy Storage Devices, Amina Saleh

Theses and Dissertations

Electrochemical energy storage technologies are nowadays playing a leading role in the global effort to address the energy challenges. A lot of attention has been devoted to designing hybrid devices known as supercapatteries which combine the merits of supercapacitors (high power density) and rechargeable batteries (high energy density). Transition metal phosphides (TMP) are a rising star for supercapattery anode materials thanks to their high conductivity, metalloid characteristics, and kinetic favorability for fast electron transport. Herein, new TMP-based materials were synthesized for use as supercapattery positive electrodes, via a multifaceted approach to yield devices enjoying concurrently high power and energy densities. …