Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry

PDF

Selected Works

Photocatalytic studies

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Materials Chemistry

Zno/Ag/Mn2o3 Nanocomposite For Visible Lightinduced Industrial Textile Effluent Degradation, Uric Acid And Ascorbic Acid Sensing And Antimicrobial Activity, Mohammad Mansoob Khan Dr Apr 2015

Zno/Ag/Mn2o3 Nanocomposite For Visible Lightinduced Industrial Textile Effluent Degradation, Uric Acid And Ascorbic Acid Sensing And Antimicrobial Activity, Mohammad Mansoob Khan Dr

Dr. Mohammad Mansoob Khan

A facile and inexpensive route has been developed to synthesize a ternary ZnO/Ag/Mn2O3 nanocomposite having nanorod structures based on the thermal decomposition method. The as-synthesized ternary ZnO/Ag/Mn2O3 nanocomposite was characterized and used for visible light-induced photocatalytic, sensing and antimicrobial studies. The ternary ZnO/Ag/Mn2O3 nanocomposite exhibited excellent and enhanced visible light-induced photocatalytic degradation of industrial textile effluent (real sample analysis) compared to pure ZnO. Sensing studies showed that the ternary ZnO/Ag/Mn2O3 nanocomposite exhibited outstanding and improved detection of uric acid (UA) and ascorbic acid (AA). It also showed effective and efficient bactericidal activities against Staphylococcus aureus and Escherichia coli. These results …


Visible Light-Induced Enhanced Photoelectrochemical And Photocatalytic Studies Of Gold Decorated Sno2 Nanostructures, Mohammad Mansoob Khan Dr, S. A. Ansari, M. E. Khan, M. O. Ansari, B. K. Min, M. H. Cho Jan 2015

Visible Light-Induced Enhanced Photoelectrochemical And Photocatalytic Studies Of Gold Decorated Sno2 Nanostructures, Mohammad Mansoob Khan Dr, S. A. Ansari, M. E. Khan, M. O. Ansari, B. K. Min, M. H. Cho

Dr. Mohammad Mansoob Khan

This paper reports a novel one-pot biogenic synthesis of Au–SnO2 nanocomposite using electrochemically active biofilm. The synthesis, morphology and structure of the as-synthesized Au–SnO2 nanocomposite were in-depth studied and confirmed by UV-vis spectroscopy, photoluminescence spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It was observed that the SnO2 surface was decorated homogeneously with Au nanoparticles. The photoelectrochemical behavior of the Au–SnO2 nanocomposite was examined by cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry in the dark and under visible light irradiation. Visible light-induced photoelectrochemical studies confirmed that the Au–SnO2 nanocomposite had enhanced activities compared …


Visible Light-Driven Photocatalytic And Photoelectrochemical Studies Of Ag-Sno2 Nanocomposites Synthesized Using An Electrochemically Active Biofilm, Mohammad Mansoob Khan Dr, S. A. Ansari, M. O. Ansari, J. Lee, M. H. Cho Jun 2014

Visible Light-Driven Photocatalytic And Photoelectrochemical Studies Of Ag-Sno2 Nanocomposites Synthesized Using An Electrochemically Active Biofilm, Mohammad Mansoob Khan Dr, S. A. Ansari, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Ag-SnO2 nanocomposites (1 mM and 3 mM) were synthesized in water at room temperature using an electrochemically active biofilm. The resulting nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The Ag-SnO2 nanocomposites exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange, methylene blue, 4-nitrophenol and 2-chlorophenol compared with pure SnO2 nanostructures. Photoelectrochemical measurements, such as electrochemical impedance spectroscopy, linear scan voltammetry and differential pulse voltammetry in the dark and under visible light irradiation, further supported the visible light activity of the Ag-SnO2 nanocomposites. These results …