Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Materials Chemistry

Synthesis And Application Of Redox-Active Covalent Organic Frameworks In Rechargeable Batteries, Mohammad K. Shehab Jan 2023

Synthesis And Application Of Redox-Active Covalent Organic Frameworks In Rechargeable Batteries, Mohammad K. Shehab

Theses and Dissertations

Synthesis and Application of Redox-Active Covalent Organic Frameworks in Rechargeable Batteries

Mohammad K. Shehab

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States

Abstract

In recent years, lithium-ion batteries (LIBs) have been considered the dominant energy storage devices for portable electronics and electric vehicles due to their high energy density, low self-discharge rate, and long cycle life. In LIBs, the traditional positive electrodes employed are mainly derived from metal-containing inorganic compounds composed of cobalt, iron, nickel, or manganese (LiCoO2, LiMn2O4, and LiFePO4) coupled with graphite as the negative electrode. Despite …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …