Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Inorganic Chemistry

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg May 2023

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg

Doctoral Dissertations

Molten chloride salts have vast potential as heat transfer fluids with both nuclear and concentrated solar power applications. For application in energy systems, the characteristics that govern these systems must be well understood. This work focuses on inorganic molten chloride salts with a special emphasis on the experimental aspect of chemical research. Chapter 2 covers the synthetic approaches for the formation of molten chloride mixtures. Many salts can be purchased from industrial suppliers, but most must be purified therefore, Chapter 3 evaluates various methodology developed for removal of impurities in salt mixtures. Once the salt of proper content and purity …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …


Systematic Size Control In The Synthesis Of Zero-Valent Iron Nanoparticles, Grant C. Bleier Feb 2018

Systematic Size Control In The Synthesis Of Zero-Valent Iron Nanoparticles, Grant C. Bleier

Chemistry and Chemical Biology ETDs

A novel synthetic method for the production of highly magnetic, low size-dispersity nanoparticles through reversible magnetic agglomeration is introduced and studied in detail. Initially, a weakly coordinating surfactant (3-octadecyl-2,4-pentanedione) is employed to produce a wide range of nanoparticle sizes ranging from 8 to 20 nm in diameter. The kinetics faced in these reactions by cheap and widely available iron complex precursors can be avoided in this method with the introduction of thermodynamic control, which occurs in the form of a magnetic precipitation event that essentially halts nanoparticle growth. Utilizing this synthetic method, the length of the alkyl chain on the …


Controlled Synthesis And Utilization Of Metal And Oxide Hybrid Nanoparticles, Cameron Cowgur Crane May 2017

Controlled Synthesis And Utilization Of Metal And Oxide Hybrid Nanoparticles, Cameron Cowgur Crane

Graduate Theses and Dissertations

This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that …


Synthesis And Characterization Of Metallic Nanoparticles For Catalytic Applications, Sarah Smith Jan 2017

Synthesis And Characterization Of Metallic Nanoparticles For Catalytic Applications, Sarah Smith

Theses and Dissertations

In recent years, research has focused on reducing the cost of catalysts in a variety of ways including using less expensive materials, improving the synthetic method, and increasing the catalytic activity, recovery, and recyclability. Typically with nanoparticles, the size, shape, composition, and surface coating have an effect on catalytic activity.1-2 In this work, we focused on reducing the cost of precious metal based catalysts by altering the synthetic methods.

One way to lower the cost of synthesizing precious metal nanoparticles is by debasing the precious metal with a second cheaper more abundant metal. CuPd nanoparticles were synthesized in oleylamine …


Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull May 2016

Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull

Masters Theses

Metal-organic nanotubes (MONTs) are an emerging class of discrete materials that are the 1D variant of metal-organic frameworks (MOFs). MONTs have potential to become an alternative 1D material to carbon nanotubes, metal oxide nanotubes, and boron nitride nanotubes because they possess an organic ligand that can be functionalized and tuned for specific applications. Despite this potential, only a handful of structures have been reported and only two examples of discrete MONTs exist in the literature. It is thus imperative to develop general methods to prepare and characterize discrete MONTs to bring them to the forefront of the scientific literature.

Efforts …


Synthesis And Characterization Of Support-Modified Nanoparticle-Based Catalysts And Mixed Oxide Catalysts For Low Temperature Co Oxidation, Andrew Justin Binder May 2015

Synthesis And Characterization Of Support-Modified Nanoparticle-Based Catalysts And Mixed Oxide Catalysts For Low Temperature Co Oxidation, Andrew Justin Binder

Doctoral Dissertations

Heterogeneous catalysts are responsible for billions of dollars of industrial output and have a profound, if often understated, effect on our everyday lives. New catalyst technologies and methods to enhance existing catalysts are essential to meeting consumer demands and overcoming environmental concerns. This dissertation focuses on the development of catalysts for low temperature carbon monoxide oxidation. CO [carbon monoxide] oxidation is often used as a probe reaction to test overall oxidation activity of a given catalyst and is an important reaction in the elimination of toxic pollutants from automotive exhaust streams. The work included here presents three new heterogeneous catalysts …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …


Modified Seed Growth Of Iron Oxide Nanoparticles In Benzyl Alcohol: Magnetic Nanoparticles For Radio Frequency Hyperthermia Treatment Of Cancer, Stanley E. Gilliland Iii Jan 2014

Modified Seed Growth Of Iron Oxide Nanoparticles In Benzyl Alcohol: Magnetic Nanoparticles For Radio Frequency Hyperthermia Treatment Of Cancer, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles have received sustained interest for biomedical applications as synthetic approaches are continually developed for precise control of nanoparticle properties. This thesis presents an investigation of parameters in the benzyl alcohol synthesis of iron oxide nanoparticles. A modified seed growth method was designed for obtaining optimal nanoparticle properties for magnetic fluid hyperthermia. With a one or two addition process, iron oxide nanoparticles were produced with crystallite sizes ranging from 5-20 nm using only benzyl alcohol and iron precursor. The effects of reaction environment, temperature, concentration, and modified seed growth parameters were investigated to obtain precise control over properties …


Synthesis Of Palladium-Based Electrocatalysis—From Pure Metal To Bimetallic Nanoparticles, Haijun Gao Dec 2012

Synthesis Of Palladium-Based Electrocatalysis—From Pure Metal To Bimetallic Nanoparticles, Haijun Gao

Masters Theses

This thesis focuses on synthesis and characterization of palladium-based nanoparticles. Background information of the research in this thesis is provided in Chapter 1. Preparation and characterization of pure palladium nanoparticles are presented in Chapter 2. A fast and convenient method to prepare ultra small Pd nanoparticles via Pluronic P123 reduction is discussed in detail. Impregnation method and poly method are also studied in this chapter. Chapter 3 reports the studies of these methods to prepare ultra small bimetallic (bimetallic means a mixture of two metals) palladium-based nanoparticles. Oleylamine-mediated method used Pd nanoparticles prepared via P123 reduction as precursor. Ultra small …