Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

University of New Orleans

Drug delivery

Articles 1 - 2 of 2

Full-Text Articles in Inorganic Chemistry

Nanomaterials For Biological Applications: Drug Delivery And Bio-Sensing, Hui Ma May 2013

Nanomaterials For Biological Applications: Drug Delivery And Bio-Sensing, Hui Ma

University of New Orleans Theses and Dissertations

The idea of utilizing nanomaterials in bio-related applications has been extensively practiced during the recent decades. Magnetic nanoparticles (MPs), especially superparamagnetic iron oxide nanoparticles have been demonstrated as promising candidates for biomedicine. A protective coating process with biocompatible materials is commonly performed on MPs to further enhance their colloidal and chemical stability in the physiological environment. Mesoporous hollow silica is another class of important nanomaterials that are extensively studied in drug delivery area for their ability to carry significant amount of guest molecules and release in a controlled manner.

In this study, different synthetic approaches that are able to produce …


Surface Functionalized Water-Dispersible Magnetite Nanoparticles: Preparation, Characterization And The Studies Of Their Bioapplications, Haiou Qu Aug 2012

Surface Functionalized Water-Dispersible Magnetite Nanoparticles: Preparation, Characterization And The Studies Of Their Bioapplications, Haiou Qu

University of New Orleans Theses and Dissertations

Iron oxide magnetic nanoparticle synthesis and their surface functionalization hold a crucial position in the design and fabrication of functional materials for a variety of biomedical applications. Non-uniform nanoparticles with poor crystallinity, prepared by conventional methods, have only limited value in biological areas. Large scale synthesis methods that are able to produce high quality, mono-dispersed iron oxide nanoparticles using low cost and environment friendly chemicals are highly desirable. Following synthesis, appropriate surface functionalization is necessary to direct the dispersibility of nanoparticles in aqueous solution in order to provide them with acceptable colloidal stability against the ion strength and many biomolecules …