Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Organic Chemistry

2016

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 15 of 15

Full-Text Articles in Inorganic Chemistry

Synthesis Of Metal-Containing Polymers And Stable Organic Radical-Containing Polymers And Their Use As Advanced Functional Materials, Joseph A. Paquette Dec 2016

Synthesis Of Metal-Containing Polymers And Stable Organic Radical-Containing Polymers And Their Use As Advanced Functional Materials, Joseph A. Paquette

Electronic Thesis and Dissertation Repository

The work presented in this thesis details the synthesis and characterization of two different families of multifunctional polymers. The first family involved the incorporation of stable 6-oxoverdazyl radicals into polymer scaffolds. This was originally achieved by the polymerization of the radical precursors, phenyl- and isopropyl-6-oxotetrazanes, followed by post-polymerization oxidation to afford the phenyl- and isopropyl-6-oxoverdazyl polymers. A second methodology involved the direct polymerization of isopropyl-6-oxoverdazyl radicals using ring-opening metathesis polymerization (ROMP) to afford polymers with controlled molecular weights and narrow molecular weight distributions. The polymers were characterized by the close comparison of the physical and spectroscopic properties …


Synthesis And Characterization Of Novel Ligand For Use On Rhodium Paddlewheel Complexes, Gavin J. Rustin Dec 2016

Synthesis And Characterization Of Novel Ligand For Use On Rhodium Paddlewheel Complexes, Gavin J. Rustin

Masters Theses

Dirhodium (II) paddlewheel complexes have proven to be useful catalysts in many transformations including C-H insertions, cyclopropanation, and silane insertion reactions. One deficiency of these catalysts is the inability to modulate the enantioselectivity with reactive diazo compounds. One avenue for potential improvement of paddlewheel complexes is coordinating ligands in the axial site to increase enantioselectivity. The axial site has been occupied by various ligands including Nheterocyclic carbenes, nitrogen compounds, and phosphorous compounds. This work examines compounds that can be used as ligands on dirhodium complexes that have a pendant chain containing a dibenzyl phosphite and dibenzyl phosphate, both of which …


Design And Synthesis Of Novel Octacarboxy Porphyrinic Metal-Organic Frameworks, Jacob A. Johnson Dec 2016

Design And Synthesis Of Novel Octacarboxy Porphyrinic Metal-Organic Frameworks, Jacob A. Johnson

Department of Chemistry: Dissertations, Theses, and Student Research

Metal-Organic Frameworks (MOFs) are a class of nanoporous crystalline materials constructed via the interconnection between metal-ions/inorganic clusters and organic ligands. Since the surface area, pore size and distribution, and chemical functionalities of MOFs are highly tunable via the judicious combinations of inorganic clusters and organic ligands, MOFs have attracted intensive interests for a variety of applications including gas adsorption and separation, catalysis, chemical sensing, and drug delivery among others. Porphyrin based ligands are of particular interest for building functional MOFs due to their unique photo-, electro-, and catalytic properties. In addition, the four-fold symmetry of porphyrin ligands offers an effective …


Visible-Light Generation Of High-Valent Metal-Oxo Intermediates And A Biomimetic Oxidation Catalyzed By Manganese Porphyrins With Iodobenzene Diacetate, Ka Wai Kwong Oct 2016

Visible-Light Generation Of High-Valent Metal-Oxo Intermediates And A Biomimetic Oxidation Catalyzed By Manganese Porphyrins With Iodobenzene Diacetate, Ka Wai Kwong

Masters Theses & Specialist Projects

High-valent iron-oxo intermediates play central roles as active oxidants in enzymatic and synthetic catalytic oxidations. Many transition metal catalysts are designed for biomimetic studies of the predominant oxidation catalysts in Nature, the cytochrome P450 enzymes.

In this work, a new photochemical method to generate high-valent iron-oxo porphyrin models was discovered. As controlled by the electronic nature of porphyrin ligands, iron(IV)-oxo porphyrin radical cations (Compound I model) and iron(IV)-oxo porphyrin derivatives (Compound II model) were produced. These observations indicate that the photochemical reactions involve a heterolytic cleavage of O-Br in precursors to give a putative iron(V)-oxo intermediate, which might relax to …


The Synthesis Of Chemosensors For Toxic Analytes, Johnathan Hugh Broome Aug 2016

The Synthesis Of Chemosensors For Toxic Analytes, Johnathan Hugh Broome

Dissertations

A number of chemosensors have been designed and synthesized to target cations (Zn2+ions), neutral molecules (cathinones), charged molecules (aminoindanes), and anions. The Zn2+ ion sensor featured bistriazole designed binding unit and ferrocene signaling units. Characterization of Zn2+ ion binding was carried out with electrochemical techniques (CV and DPV), 1H-NMR, mass spectrometry, and molecular modelling. It exhibited a 1:1 binding stoichiometry with Zn2+ and had an affinity for ZnCl2 (Log K1:1 = 4.1 ± 0.02) over other Zn2+ salts.

The cathinone probe was designed to selectively bind mephedrone over common street drugs …


Mida Boronates Are Hydrolysed Fast And Slow By Two Different Mechanisms, Jorge A. Gonzalez, O. Maduka Ogba, Gregory F. Morehouse, Nicholas Rosson, Kendall N. Houk, Andrew G. Leach, Paul H.-Y. Cheong, Martin D. Burke, Guy C. Lloyd-Jones Jul 2016

Mida Boronates Are Hydrolysed Fast And Slow By Two Different Mechanisms, Jorge A. Gonzalez, O. Maduka Ogba, Gregory F. Morehouse, Nicholas Rosson, Kendall N. Houk, Andrew G. Leach, Paul H.-Y. Cheong, Martin D. Burke, Guy C. Lloyd-Jones

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for building-block-based small molecule construction, largely due to the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, hindering efforts to address current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base-mediated and the other neutral. The former can proceed more than three orders of magnitude faster, and involves rate-limiting attack at a MIDA carbonyl carbon by hydroxide. The alternative ‘neutral’ hydrolysis …


High-Valent Organometallic Palladium And Nickel Complexes And Their Roles In Carbon-Carbon And Carbon-Heteroatom Bond Formation Reactions, Jason Wesley Schultz May 2016

High-Valent Organometallic Palladium And Nickel Complexes And Their Roles In Carbon-Carbon And Carbon-Heteroatom Bond Formation Reactions, Jason Wesley Schultz

Arts & Sciences Electronic Theses and Dissertations

The development of palladium catalysis has been influential in a wide range of organic transformations, in particular C-C coupling, C-Heteroatom coupling and C-H functionalization reactions. These catalytic transformations normally proceed through the Pd0/II catalytic cycle. These reactions are remarkably useful, however, they suffer from two major problems: -hydride elimination and palladium black deposition. To circumvent these problems, recent reports have been focused on developing novel organic transformations proceeding through high-valent palladium and nickel catalytic cycles.

To this point, we recently reported the isolation and characterization of various mononuclear PdIII complexes using the tetradentate ligands, N,N-di-alkyl-2,11-diaza[3.3](2,6)pyridinophane (RN4, R = tBu, iPr, …


The Effects Of Hydrogen Bonding On The Reactivity Of Synthetic Ada Repair Protein Analogues, Josiah G. Elsberg May 2016

The Effects Of Hydrogen Bonding On The Reactivity Of Synthetic Ada Repair Protein Analogues, Josiah G. Elsberg

Boise State University Theses and Dissertations

The study of bioinorganic chemistry is an important field, as it can provide insight as to why Nature has chosen certain active sites and structures within different kinds of metalloproteins. Ada repair protein, a zinc-containing metalloprotein, is one such topic of interest. Although it is known that Ada RP is able to repair methyl-phosphotriester backbone damage by self-methylation of one of its cysteine groups, the mechanism is not fully understood. Two pathways have been proposed: a dissociative pathway where the Zn-S bond becomes a zinc/sulfur ion pair, and an associative pathway where a four ringed σ-metathesis occurs. Previous research has …


Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull May 2016

Developing Synthetic Methods To Prepare Discrete Metal-Organic Nanotubes, Derek L. Mull

Masters Theses

Metal-organic nanotubes (MONTs) are an emerging class of discrete materials that are the 1D variant of metal-organic frameworks (MOFs). MONTs have potential to become an alternative 1D material to carbon nanotubes, metal oxide nanotubes, and boron nitride nanotubes because they possess an organic ligand that can be functionalized and tuned for specific applications. Despite this potential, only a handful of structures have been reported and only two examples of discrete MONTs exist in the literature. It is thus imperative to develop general methods to prepare and characterize discrete MONTs to bring them to the forefront of the scientific literature.

Efforts …


Synthesis And Characterization Of Organic-Inorganic Hybrid Materials For Thermoelectric Devices, Paige M. Huzyak Apr 2016

Synthesis And Characterization Of Organic-Inorganic Hybrid Materials For Thermoelectric Devices, Paige M. Huzyak

Masters Theses & Specialist Projects

The development of organic-inorganic hybrid materials is of great interest in thermoelectrics for its potential to combine the desirable characteristics of both classes of materials. Thermoelectric materials must combine low thermal conductivity with high electrical conductivity, but in most materials, thermal and electrical conductivity are closely related and positively correlated. By combining the low thermal conductivity, flexibility, facile processing, and low cost of organic components with the high electrical conductivity and stability of inorganic components, materials with beneficial thermoelectric properties may be realized.

Here, we describe the synthesis and characterization of anthracene-containing organic-inorganic hybrid materials for thermoelectric purposes. Specifically, POSS-ANT …


A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin Mar 2016

A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin

Albert Fratini

The title compound, sodium bis­(6-carb­oxy-1-hy­droxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium, Na+·C16H15B2O13-, was prepared in two steps from 2-bromo-p-xylene. Its crystal structure was determined at 140 K and has triclinic (P) symmetry. The compound presents a unique structural motif, including two units of the cyclic anhydride of boronoterephthalic acid, joined by a protonated, and thereby trivalent, oxonium center. Association in the crystal is realized by complementary hydrogen bonding of the carboxyl groups, as well as by coordination of the sodium cations to the oxygen centers on the five-membered rings.


Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor Feb 2016

Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor

Dissertations, Theses, and Capstone Projects

The energy transfers and nature of defect levels of an organic/inorganic composite of Zinc Oxide and Graphite are studied with multidimensional spectroscopy. The edge and surface states of each composite are uncovered using excitation emission experiments showing which defect states are mediating the energy transfer from the metal oxide to the graphite oxide. Multidimensional time resolved spectroscopy further describes the effect of the carbon phase on the energy transfer pathways in the material.


Gravimetrically Characterizable Common Alkali Reducing Agents And Ligand Design Of A New Electron Rich Guanidinate, Efrain Maximiliano Castillo Jan 2016

Gravimetrically Characterizable Common Alkali Reducing Agents And Ligand Design Of A New Electron Rich Guanidinate, Efrain Maximiliano Castillo

Open Access Theses & Dissertations

SynThesis, isolation and characterization of 12 new alkali arenides was performed by the addition of the chelating base 18-crown-6. Electrochemistry, UV-vis/NIR spectroscopy and XRD studies were performed.

The incoorporation of an imidazolin-2-iminato group to the background of a guanidinate showed that this kind of ligand is electronically flexible and metal dependent. It was found that is more electron donating than some previously reported guanidinates and ketimine guanidinates.


Decarbonylative Cross Coupling Of Phthalimides With Diorganozinc Reagents—Efforts Toward Catalysis, Kimberly S. Deglopper, Sarah K. Fodor, Thomas Bd Endean, Jeffrey B. Johnson Jan 2016

Decarbonylative Cross Coupling Of Phthalimides With Diorganozinc Reagents—Efforts Toward Catalysis, Kimberly S. Deglopper, Sarah K. Fodor, Thomas Bd Endean, Jeffrey B. Johnson

Faculty Publications

The decarbonylative coupling of phthalimides with diorganozinc reagents to form o-substituted benzamides has been previously demonstrated as a viable process, but only with stoichiometric nickel(0). Investigations into a number of reaction variables, including solvent, ligand, and substrate substitution, have yielded multiple sets of conditions capable of achieving up to 10 catalyst turnovers, most successfully with the use of electron withdrawing nitrogen substituents on the phthalimide. In addition, these investigations have provided insight into the intermediates within the catalytic cycle and have revealed new approaches to the development of a general catalytic methodology.


Organometallic Materials: Ferroceno[C]Thiophenes And 1,2-Bisthienylmetallocenes, Surya R. Banks Jan 2016

Organometallic Materials: Ferroceno[C]Thiophenes And 1,2-Bisthienylmetallocenes, Surya R. Banks

Theses and Dissertations--Chemistry

Development of synthetic routes toward two general organometallic frameworks was undertaken. The first project involved synthetic attempts of substituted and unsubstituted ferroceno[c]thiophene while the second one was the synthesis of 1,2-dithienylmetallocenes. The long-term goal of this work is to lay the foundations for study of electronic, electrochromic, redox, and optical properties of thiophene-based materials integrated with organometallic systems such as ferrocene, ruthenocene and cymantrene. The synthetic pathway for the target molecule in the first project involved converting 1,2-bis(hydroxymethyl)ferrocene to 1,2-bis(thiouroniummethyl)ferrocene with thiourea under acidic conditions. Refluxing the salt in base followed by acidification resulted in 1,2-bis(mercaptomethyl)ferrocene, which is …