Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Inorganic Chemistry

Investigating Reactivity Of Artificial Copper Peptides With Small Molecules, Allyson Bryant May 2023

Investigating Reactivity Of Artificial Copper Peptides With Small Molecules, Allyson Bryant

Honors Theses

The design of artificial enzymes has been a topic of significant interest in the field of biochemistry, as they can provide new opportunities for catalytic processes and drug development. De novo protein design has emerged as a promising approach to create such enzymes, and the study of metalloproteins, particularly copper-binding peptides, has become a focus of this research. This thesis investigates the reactivity of a mutated copper-binding peptide, I5A-3SCC, with oxygen and its implications in the development of artificial enzymes.

The parent peptide, 3SCC, was mutated by replacing Isoleucine residues with smaller Alanine side chains, which was hypothesized to enhance …


A Conductivity Analysis Of A Newly Synthesized Poly(Ethylene Glycol) Methyl Ether Hydroxide Electrolyte, Sarah Marie Peterson May 2021

A Conductivity Analysis Of A Newly Synthesized Poly(Ethylene Glycol) Methyl Ether Hydroxide Electrolyte, Sarah Marie Peterson

Honors Theses

This thesis investigates the synthesis and conductive properties of a Poly (ethylene glycol) methyl ether-based polymer electrolyte. The goal of the synthesis is to enhance the hydroxide ion conduction properties of the polymer with its cationic groups attached. The MePEG backbone contained seven ethylene glycol groups and was modified to substitute the hydroxide group in the MePEG with trimethylamine. In addition, the bromide added in the synthesis was exchanged for hydroxide ions to allow for the transportation of hydroxide ions in polymeric electrolytes that can be used in Anion Exchange Membrane Fuel Cells. The newly synthesized polymer was compared to …


The Synthesis Of A Mepeg-Based Hydroxide Conducting Electrolyte And The Optimization Of The Mepeg-Tosylation Reaction, Andrew Ladner May 2020

The Synthesis Of A Mepeg-Based Hydroxide Conducting Electrolyte And The Optimization Of The Mepeg-Tosylation Reaction, Andrew Ladner

Honors Theses

As society is becoming increasingly aware of the effects of climate change and the ever-looming threat of a fuel shortage, exploring green and renewable alternative energy production, such as fuel cells, is paramount. This project investigates the synthesis of a polyethylene glycol monomethyl ether (MePEGn) based polymer as well as the optimization of the MePEG Tosylation reaction. The MePEG explored contains seven polymerized ethoxy groups (MePEG7). The MePEG7 polymer was modified by substituting a positively-charged trimethylamine group in the place of the alcohol functional group at the end of the PEG chain. The reason for …


Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr. May 2020

Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr.

Honors Theses

In this project, the vibrational characteristics/vibrational modes are explored via Raman Spectroscopy for thiolated-gold nanoparticles. This class of compounds is also known as gold nanoparticles (AuNPs). They remain of great interest in research areas such as catalysis, gold dependent nanoelectronics, drug delivery, and sensing, due to their unique size-dependent optical, chiroptical, and electronic properties. Vibrational spectroscopy of thiolated gold nanoparticles are oftentimes considered nontrivial as the compounds strongly absorb light in the visible region of the electromagnetic spectrum, are generally considered weak scatterers, and give off large amounts of fluorescence. This combined with their black appearance, susceptibility to localized heating, …


Photoelectrochemical Investigations On Novel Earth Abundant Solid State Catalysts For Solar Water Oxidation, Nathaniel Branimir Kurtz May 2018

Photoelectrochemical Investigations On Novel Earth Abundant Solid State Catalysts For Solar Water Oxidation, Nathaniel Branimir Kurtz

Honors Theses

In light of a looming fossil fuel scarcity, many forms of alternative, clean energy production are being researched in order to provide a more sustainable source of energy production for the future. One area of research is on using novel, abundant catalytic materials in conjunction with semiconducting materials to drive the splitting of water in order to produce hydrogen gas, an energy-rich fuel. Currently, efficiency is limited by the energy bottleneck posed by the oxygen evolution reaction (OER) half of water splitting. In this work, cobalt selenide (CoSe) catalyst paired with the semiconductor iron oxide (Fe2O3) has been identified as …