Open Access. Powered by Scholars. Published by Universities.®

Environmental Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Environmental Chemistry

Molecular Nature Of Marine Particulate Organic Iron-Carrying Moieties Revealed By Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (Esi-Fticrms), Chen Xu, Peng Lin, Luni Sun, Hongmei Chen, Wei Xing, Manoj Kamalanathan, Patrick G. Hatcher, Maureen H. Conte, Antonietta Quigg, Peter H. Santschi Jan 2020

Molecular Nature Of Marine Particulate Organic Iron-Carrying Moieties Revealed By Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (Esi-Fticrms), Chen Xu, Peng Lin, Luni Sun, Hongmei Chen, Wei Xing, Manoj Kamalanathan, Patrick G. Hatcher, Maureen H. Conte, Antonietta Quigg, Peter H. Santschi

Chemistry & Biochemistry Faculty Publications

Marine sinking particulate organic matter (POM), acting as a link between surface primary production and burial of organic matter in marine sediments, undergoes a variety of physical and biochemical alterations on its way to the deep ocean, resulting in an increase in its un-characterizable proportion with diagenesis. Further, the binding ligands in POM for iron, an essential nutrient to marine life and tightly coupled with organic matter, has rarely been studied. In the current study, we employed an approach combining sequential extraction with ultrahigh resolution mass spectrometry (ESI-FTICRMS), in order to explore and unravel the chemical characteristics of organic matter …


Nrlmsis 2.0: A Whole-Atmosphere Empirical Model Of Temperature And Neutral Species Densities, J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, Peter F. Bernath, X. Chu, E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams, T. Yuan Jan 2020

Nrlmsis 2.0: A Whole-Atmosphere Empirical Model Of Temperature And Neutral Species Densities, J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, Peter F. Bernath, X. Chu, E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams, T. Yuan

Chemistry & Biochemistry Faculty Publications

NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other …