Open Access. Powered by Scholars. Published by Universities.®

Environmental Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Series

2020

Glucose electro-oxidation; Ni; Au; Catalytic activity; Stability

Articles 1 - 1 of 1

Full-Text Articles in Environmental Chemistry

Ni-Au Anodic Nano-Electrocatalyst For Direct Glucose Fuel Cells, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof, Aya S. Abdulhalim Eng Mar 2020

Ni-Au Anodic Nano-Electrocatalyst For Direct Glucose Fuel Cells, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof, Aya S. Abdulhalim Eng

Chemical Engineering

This study aims at the sequential assembling of a nickel oxide (NiOx: cauliflower-like nanostructure, 90 nm) and gold (Au; spherical, 95 nm in an average particle size) onto the GC surface nanocatalyst on a glassy carbon (GC) electrode (will be abbreviated as Ni-Au/GC) for the glucose electro−oxidation (GO); the principal anodic reaction in the direct glucose fuel cells (DGFCs). The charge of the Ni deposition on the GC surface (will be abbreviated as Ni/GC electrode) was initially optimized to obtain the highest catalytic activity toward GO which attained at (339.8 Ag−1) by applying 15 mC in the Ni deposition. Yet, …