Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Lithography

Articles 1 - 3 of 3

Full-Text Articles in Analytical Chemistry

Surface Modification Of Pillar Array Systems For Chromatography And Fluorescence Enhancement, Danielle Ruth Lincoln May 2017

Surface Modification Of Pillar Array Systems For Chromatography And Fluorescence Enhancement, Danielle Ruth Lincoln

Doctoral Dissertations

Thin-layer chromatography offers many advantages in the world of chemical separations due to its ease of use, high sensitivity, range of applicability, and multiplex capability. However, this technique is succeptible to band broadening effects that limit its efficiency. Attempting to resolve these effects by decreasing particle size causes a decrease in mobile phase velocity which creates its own band broadening via longitudinal diffusion. However, pillar array systems on the micro- and nanoscale have been shown as useful analogues to thin-layer chromatography which mitigate the efficiency concerns associated with the method.

The work within this dissertation is concerned with the modification …


The Fabrication Of Micro- And Nano- Scale Deterministic And Stochastic Pillar Arrays For Planar Separations, Teresa Byers Kirchner May 2015

The Fabrication Of Micro- And Nano- Scale Deterministic And Stochastic Pillar Arrays For Planar Separations, Teresa Byers Kirchner

Doctoral Dissertations

Planar chromatography, unlike high performance liquid chromatography (HPLC), has not experienced a significant evolution in stationary phase media since the development of the technique. This has lead HPLC to become a much more popular and robust analytical method. Main factors that contribute to improved performance of chromatographic systems include a reduction in particle size, homogeneity of the stationary phase, and an increase in velocity of the mobile phase. In general, a reduction in particle size should lead to an improvement in the performance of all chromatography systems. However, the main obstacle of improving the performance of planar chromatography systems is …


Improving Analytical Utility Of Surface Enhanced Raman Spectroscopy Through Unique Lithographic Substrate Development, Sabrina Marie Wells May 2012

Improving Analytical Utility Of Surface Enhanced Raman Spectroscopy Through Unique Lithographic Substrate Development, Sabrina Marie Wells

Doctoral Dissertations

Surface enhanced Raman spectroscopy (SERS) has the potential to be a useful analytical technique due to large signal enhancements. Unfortunately, SERS has several drawbacks, including a lack of reproducibility, which inhibits it from being a practical option. These large signals often arise from “hot spots” of extremely high enhancement on nanofeatured metallic substrates, the most common being comprised of aggregated silver colloid. It is difficult to reproducibly create these hot spots due to the randomness of the colloid substrates. However, through controlled substrate fabrication, many problems associated with SERS analysis can be overcome. Electron beam lithography (EBL) combined with reactive-ion …