Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Analytical Chemistry

Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough Dec 2017

Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough

Doctoral Dissertations

Diamond films are used at the Spallation Neutron Source (SNS) as the primary charge exchange foils (i.e., stripper foils) of the accelerated 1 GeV (Gigaelectron volts) hydride ions. The most common type of film used is a nanocrystalline diamond film, typically 17 mm x 45 mm (millimeter) with an aerial density of 350 μg/cm2 (microgram per square centimeter). The diamond film is deposited on a corrugated silicon substrate using plasma-assisted chemical vapor deposition. After the growth of the diamond film, 30 mm of the silicon substrate is etched away, leaving a freestanding diamond foil with a silicon handle that …


New Optical And Electrochemical Probes For Trace Chemicals With Health And Environmental Impacts, Thomas Stewart Carpenter Aug 2017

New Optical And Electrochemical Probes For Trace Chemicals With Health And Environmental Impacts, Thomas Stewart Carpenter

Doctoral Dissertations

The work in this dissertation focuses on the development of probes for the analysis of trace chemicals in samples with health and environmental impacts. A paper, Cu(copper)-based colorimetric probe was developed for the detection of toxic hydrogen sulfide (H2S) gas. A modified Kipp’s apparatus was used to generate desired concentrations of H2S in a total volume of 1.35 L (liters). The probe shows a qualitative response down to 60 ppb (parts per billion), indicating its ability to be used in industrial settings as a replacement for the commonly used lead acetate strips. When used in conjunction …


Improved Sample Utilization In Thermal Ionization Mass Spectrometry Isotope Ratio Measurements: Refined Development Of Porous Ion Emitters For Nuclear Forensic Applications, Matthew Louis Baruzzini May 2017

Improved Sample Utilization In Thermal Ionization Mass Spectrometry Isotope Ratio Measurements: Refined Development Of Porous Ion Emitters For Nuclear Forensic Applications, Matthew Louis Baruzzini

Doctoral Dissertations

The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical efforts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization efficiency, often less than tenths of a percent; the majority of …


Surface Modification Of Pillar Array Systems For Chromatography And Fluorescence Enhancement, Danielle Ruth Lincoln May 2017

Surface Modification Of Pillar Array Systems For Chromatography And Fluorescence Enhancement, Danielle Ruth Lincoln

Doctoral Dissertations

Thin-layer chromatography offers many advantages in the world of chemical separations due to its ease of use, high sensitivity, range of applicability, and multiplex capability. However, this technique is succeptible to band broadening effects that limit its efficiency. Attempting to resolve these effects by decreasing particle size causes a decrease in mobile phase velocity which creates its own band broadening via longitudinal diffusion. However, pillar array systems on the micro- and nanoscale have been shown as useful analogues to thin-layer chromatography which mitigate the efficiency concerns associated with the method.

The work within this dissertation is concerned with the modification …


Utilizing Nanostructures And Nano-Mechanics For Sensitive Analyte Detection Via Surface Enhanced Raman Spectroscopy (Sers) And Micro-Cantilever Sensing Platforms, Ryan Andrew Wallace May 2017

Utilizing Nanostructures And Nano-Mechanics For Sensitive Analyte Detection Via Surface Enhanced Raman Spectroscopy (Sers) And Micro-Cantilever Sensing Platforms, Ryan Andrew Wallace

Doctoral Dissertations

The purpose of this dissertation is to present the effective utilization of nano-structures and nano-mechanics in conjunction with surface enhanced Raman spectroscopy (SERS) and micro-cantilever (MC) mechanical sensors for sensitive analytical detection. One of the most important attributes an Analytical Chemist can possess is the ability to develop and efficiently use the tools provided to obtain precise and accurate information that can be effectively communicated. The following is a brief outline of the background concepts and studies that will be present herein.

A discussion of SERS will be presented in which the history and concepts behind the technique will be …