Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Analytical Chemistry

Monolayer-Protected Nanoparticle Doped Xerogels As Functional Components Of Amperometric Glucose Biosensors, Michael Hartley Freeman, Jackson R. Hall, Michael C. Leopold Mar 2013

Monolayer-Protected Nanoparticle Doped Xerogels As Functional Components Of Amperometric Glucose Biosensors, Michael Hartley Freeman, Jackson R. Hall, Michael C. Leopold

Chemistry Faculty Publications

First-generation amperometric glucose biosensors incorporating alkanethiolate-protected gold nanoparticles, monolayer protected clusters (MPCs), within a xerogel matrix are investigated as model systems for nanomaterial-assisted electrochemical sensing strategies. The xerogel biosensors are comprised of platinum electrodes modified with composite films of (3-mercaptopropyl)trimethoxy silane xerogel embedded with glucose oxidase enzyme, doped with Au225(C6)75 MPCs, and coated with an outer polyurethane layer. Electrochemistry and scanning/transmission electron microscopy, including cross-sectional TEM, show sensor construction, humidity effects on xerogel structure, and successful incorporation of MPCs. Analytical performance of the biosensor scheme with and without MPC doping of the xerogel is determined from direct glucose injection during …


A Series Of Vertically Integrated Nanotechnology Experiments For The Undergraduate Curriculum, Kevin W. Kittredge, Lesley E. Russell, Michael C. Leopold Jun 2007

A Series Of Vertically Integrated Nanotechnology Experiments For The Undergraduate Curriculum, Kevin W. Kittredge, Lesley E. Russell, Michael C. Leopold

Chemistry Faculty Publications

We have designed three nanotechnology experiments that are vertically integrated for an undergraduate chemistry curriculum. They are an evolving set of experiments for sequential courses in an undergraduate chemistry program. These experiments are designed to match the student's level of understanding for each particular course. The participating student is involved in a "research" project that progresses in both theory and experimental technique. Students benefit from these vertically integrated experiments by being involved in multiple facets of a simulated research project. This mimics a traditional research project under an advisor's supervision without the undesired drawback of an unknown outcome.