Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Analytical Chemistry

Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman Sep 2019

Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The photochemistry of pyruvic acid (PA) in aqueous atmospheric particles contributes to the production of secondary organic aerosols. This work investigates the fate of ketyl and acetyl radicals produced during the photolysis (λ ≥ 305 nm) of 5-100 mM PA under steady state [O2(aq)] = 260 μM (1.0 ≤ pH ≤ 4.5) for photon fluxes between 1 and 10 suns. The radicals diffuse quickly into the water/air interface of microbubbles and react with dissolved O2 to produce singlet oxygen (1O2*). Furfuryl alcohol is used to trap and bracket the steady-state production of …


The Effects Of Reactant Concentration And Air Flow Rate In The Consumption Of Dissolved O2 During The Photochemistry Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman Mar 2019

The Effects Of Reactant Concentration And Air Flow Rate In The Consumption Of Dissolved O2 During The Photochemistry Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The sunlight photochemistry of the organic chromophore pyruvic acid (PA) in water generates ketyl and acetyl radicals that contribute to the production and processing of atmospheric aerosols. The photochemical mechanism is highly sensitive to dissolved oxygen content, [O2(aq)], among other environmental conditions. Thus, herein we investigate the photolysis (λ ≥ 305 nm) of 10–200 mM PA at pH 1.0 in water covering the relevant range 0 ≤ [O2(aq)] ≤ 1.3 mM. The rapid consumption of dissolved oxygen by the intermediate photolytic radicals is monitored in real time with a dissolved oxygen electrode. …


An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman Sep 2018

An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman

Chemistry Faculty Publications

Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. …


Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman Apr 2017

Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic activities contribute benzene, toluene, and anisole to the environment, which in the atmosphere are converted into the respective phenols, cresols, and methoxyphenols by fast gas-phase reaction with hydroxyl radicals (HO(•)). Further processing of the latter species by HO(•) decreases their vapor pressure as a second hydroxyl group is incorporated to accelerate their oxidative aging at interfaces and in aqueous particles. This work shows how catechol, pyrogallol, 3-methylcatechol, 4-methylcatechol, and 3-methoxycatechol (all proxies for oxygenated aromatics derived from benzene, toluene, and anisole) react at the air-water interface with increasing O3(g) during τc ≈ 1 μs contact time and contrasts their …


Reactivity Of Ketyl And Acetyl Radicals From Direct Solar Actinic Photolysis Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman Mar 2017

Reactivity Of Ketyl And Acetyl Radicals From Direct Solar Actinic Photolysis Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The variable composition of secondary organic aerosols (SOA) contributes to the large uncertainty for predicting radiative forcing. A better understanding of the reaction mechanisms leading to aerosol formation such as for the photochemical reaction of aqueous pyruvic acid (PA) at λ ≥ 305 nm can contribute to constrain these uncertainties. Herein, the photochemistry of aqueous PA (5-300 mM) continuously sparged with air is re-examined in the laboratory under comparable irradiance at 38° N at noon on a summer day. Several analytical methods are employed to monitor the time series of the reaction, including (1) the derivatization of carbonyl (C═O) functional …


Aqueous Photochemistry Of Glyoxylic Acid, Alexis J. Eugene, Sha-Sha Xia, Marcelo I. Guzman Jun 2016

Aqueous Photochemistry Of Glyoxylic Acid, Alexis J. Eugene, Sha-Sha Xia, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging …


Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman Apr 2016

Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

The reductive tricarboxylic acid (rTCA) cycle is an important central biosynthetic pathway that fixes CO2 into carboxylic acids. Among the five reductive steps in the rTCA cycle, the two-electron reduction of fumarate to succinate proceeds nonenzymatically on the surface of photoexcited sphalerite (ZnS) colloids suspended in water. This model reaction is chosen to systematically study the surface photoprocess occurring on ZnS in the presence of [Na2S] (1–10 mM) hole scavenger at 15 °C. Experiments at variable pH (5–10) indicate that monodissociated fumaric acid is the primary electron acceptor forming the monoprotic form of succinic acid. The following …


Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman Sep 2015

Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air–solid interface under variable relative humidity (RH = 0–90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10–6 occurs for …


Catechol Oxidation By Ozone And Hydroxyl Radicals At The Air-Water Interface, Elizabeth A. Pillar, Robert C. Camm, Marcelo I. Guzman Nov 2014

Catechol Oxidation By Ozone And Hydroxyl Radicals At The Air-Water Interface, Elizabeth A. Pillar, Robert C. Camm, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air–water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon …