Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Analytical Chemistry

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg May 2023

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg

Doctoral Dissertations

Molten chloride salts have vast potential as heat transfer fluids with both nuclear and concentrated solar power applications. For application in energy systems, the characteristics that govern these systems must be well understood. This work focuses on inorganic molten chloride salts with a special emphasis on the experimental aspect of chemical research. Chapter 2 covers the synthetic approaches for the formation of molten chloride mixtures. Many salts can be purchased from industrial suppliers, but most must be purified therefore, Chapter 3 evaluates various methodology developed for removal of impurities in salt mixtures. Once the salt of proper content and purity …


Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri Dec 2021

Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri

Doctoral Dissertations

High-entropy materials (HEMs) have emerged as a new class of multi-principal-element materials with great technological prospects. As a unique class of concentrated solid-solution materials, HEMs, formed on the premise of incorporating five or more principal elements into a single crystalline phase, provide an excellent opportunity to access superior catalytic materials ‘hiding’ in the unexplored central regions of a multicomponent phase space of higher orders.

However, the fabrication of HEMs is energy-intensive, typically requiring extreme temperatures and/or pressures under which agglomeration of particles occurs with a commensurate decrease in surface area. For most catalytic applications, non-agglomerated particles with high surface areas …


Development Of An F-Element Separation Chemistry Using Solid Electrolytes, Kristian Guy Myhre Dec 2016

Development Of An F-Element Separation Chemistry Using Solid Electrolytes, Kristian Guy Myhre

Doctoral Dissertations

The f‒elements (lanthanides and actinides) have numerous applications and are critically important to many industries, including the energy, security, and medical industries. One of the barriers to increased use and availability of the f‒elements is the difficulty in separating them from each other due to their similar chemistries. This is especially true of the trivalent f‒elements (lanthanides and minor actinides). The development of separation techniques that maximize the differences in the physicochemical properties of the f‒elements is therefore an important area of research. For these reasons, an effort was undertaken to explore the use of solid …


Cd Transport In Eutectic Licl-Kcl And Contamination Of Zr Metal And Thermal Dehydration Of Bulk Licl-Kcl, Nicholas Azoy Earle May 2016

Cd Transport In Eutectic Licl-Kcl And Contamination Of Zr Metal And Thermal Dehydration Of Bulk Licl-Kcl, Nicholas Azoy Earle

Masters Theses

Researchers at Idaho National Labs have noted unexpectedly high Cd content in empty cladding hulls after processing in the Mark-IV ER. It has been theorized that Cd metal is transporting from the LCC pool through the eutectic LiCl-KCl salt bath to the anode baskets containing the empty hull where it is retained as a Zr-Cd intermetallic. This study sought to replicate the Cd contamination in a dry Ar glovebox using small-scale analogue of the Mark-IV ER salt-Cd metal system.

Anhydrous eutectic LiCl-KCl was an essential regent in this research and experiments were conducted to investigate the feasibility of dehydrating nominally …


Advances In High-Throughput Analysis: Automated Radiochemical Separations And Nanopillar Based Separations And Field Enhanced Spectroscopy, Jennifer Jeanne Charlton Aug 2015

Advances In High-Throughput Analysis: Automated Radiochemical Separations And Nanopillar Based Separations And Field Enhanced Spectroscopy, Jennifer Jeanne Charlton

Doctoral Dissertations

Often the need to analyze a large number of samples coincide with critical time consternates. At such times, the implementation of high-throughput technologies is paramount. In this work we explore some viable pathways for high-throughput analysis and develop advancements in novel forms of detection of materials that are vital in the environmental, biological as well as national security arenas. Through the use of new protocols with high sensitivity and specificity as well as simplified chemical processing and sample preparation we aim to allow for improved throughput, fieldable detection, and rapid data acquisition of extensive sample sets. The methods developed in …


An Investigation Of Inorganic Compound Scattering., Karl Jay Bernstein May 2015

An Investigation Of Inorganic Compound Scattering., Karl Jay Bernstein

Doctoral Dissertations

Raman and its associated forms of spectroscopy are powerful tools that have been under-utilized. Presented within are three inorganic compounds studied with some form of Raman spectroscopy: normal Raman, hyper-Raman (HR), surface-enhanced Raman spectroscopy (SERS), surface-enhanced hyper-Raman spectroscopy (SEHRS), or resonance Raman spectroscopy (RR).

The first study involves the investigation of phosphine binding with silver metal. Phosphines find wide use in synthetic circles yet have had little study into their method of binding, unlike similar compounds comprised of sulfur. In order to understand the binding of phosphines, several tertiary phosphines, secondary phosphines and secondary phosphine oxides are examined with SERS. …


Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang May 2015

Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang

Doctoral Dissertations

My research focuses on catalysis of oxygen reduction reaction (ORR) by a series of Cu(II) [copper with positive two valence] -1,2,4-triazole complex-based electrocatalysts at the cathode of PEMFC (polymer electrolyte membrane fuel cell), an efficient and environmental friendly energy conversion system compared to internal combustion engines in use today. The sluggish kinetics of ORR considerably limited the performance of PEMFCs. Understanding of ORR mechanism is important for developing affordable, active and durable ORR catalysts for such devices.

The first part of my work focused on improving the ORR performance of Cu(II)-1,2,4-triazole complex-based catalysts in an acidic environment by exploring synthesis …


The Itinerant Position Of Yttrium As Evidenced By Carboxylic Acid Extractions, Dustin C Collier May 2012

The Itinerant Position Of Yttrium As Evidenced By Carboxylic Acid Extractions, Dustin C Collier

Doctoral Dissertations

The rare-earth elements Y and La-Lu share many similar physical and chemical properties. These similarities are reflected by the difficulty in the complete separation of the rare earths, often requiring hundreds to thousands of stages for the production of pure rare earths. Yttrium, traditionally known to be separated with Ho, has also been observed to be separated with other elements within the lanthanide series, and even outside the bounds of the lanthanide series itself. Previous publications by several authors have indicated that steric factors could influence the position of Y in solvent extractions of the rare earths using carboxylic acid …


New Electrochemical And Optical Detection Methods For Biological And Environmental Applications, Royce Nicholas Dansby-Sparks Aug 2010

New Electrochemical And Optical Detection Methods For Biological And Environmental Applications, Royce Nicholas Dansby-Sparks

Doctoral Dissertations

Detection of chromium and vanadium is of interest for biomedical and environmental applications. The two metals have narrow limits between being essential and toxic for humans. Ultra-sensitive techniques have been studied to measure Cr and V at low concentrations found in human blood and environmental samples. Bismuth film and mercury-alloy electrodes have been developed as alternatives to traditional Hg-based electrodes for Cr and V detection. While catalytic adsorptive stripping voltammetry (CAdSV) has been used to detect Cr and V, little is known about the process. The mechanisms of CAdSV have been probed to provide a better understanding of its exceptional …