Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 45 of 45

Full-Text Articles in Chemistry

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li Mar 2016

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li

Doctoral Dissertations

The major part of this dissertation discusses the engineering of the refractive index of materials using solution-processable polymer nanocomposites and their applications in building optical components and devices. Three particular polymer nanocomposites have been introduced to achieve materials with tunable refractive indices and enhanced optical properties, which can be used to manipulate the behavior of light or electromagnetic radiations. In the first system, polyhedral oligomeric silsesquioxane (POSS)/polymer nanocomposites are developed. Thin films with tunable, low refractive indicies were fabricated from the composites. The mechanical strength of these films was characterized, and their application in antireflective coatings is discussed. In the …


(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari Mar 2016

(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari

Doctoral Dissertations

The research in this dissertation is categorized into two parts. The first part is focused on investigation of order-to-disorder transitions (ODT) in nanocomposites of an amphiphilic block copolymer containing various hydrogen-bonded additives, and fabrication of novel mesoporous silica based materials by utilizing such nanocomposites as templates. Disordered Pluronic®, poly(ethylene oxide) (PEO)−poly(propylene oxide) (PPO)−PEO triblock copolymer upon blending with small molecule additives containing hydrogen-bond-donating functional groups (carboxyl or hydroxyl) result into ordered nanoscale morphologies by preferentially interacting with the hydrophilic PEO chains in the Pluronic®. The dependence of ODT-temperature in these novel Pluronic®/small-molecule-additive complexes on composition, number and type of functional …


Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das Dec 2015

Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das

Doctoral Dissertations

The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design.

The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, …


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are …


Novel Thermoplastic Elastomers Based On Benzofulvene: Synthesis And Mechanical Properties, Weiyu Wang Dec 2015

Novel Thermoplastic Elastomers Based On Benzofulvene: Synthesis And Mechanical Properties, Weiyu Wang

Doctoral Dissertations

Thermoplastic elastomers (TPEs) are of great importance both academically and technologically. Currently TPEs are the predominated form of styrene-diene copolymers. However, these styrenic TPEs have serious limitations in applications, especially at higher temperature, because of their low upper service temperature (UST). The work described in this dissertation aimed to developing thermoplastic elastomers with a higher UST and lower cost.

In order to develop TPEs with a higher UST, we employed benzofulvene, an anionically polymerizable monomer in hydrocarbon solvent at room temperature, as the glassy block and copolymerized it with isoprene to prepare polybenzofulvene-polyisoprene-polybenzofulvene (FIF) triblock copolymers. Among all triblock copolymers …


Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous Nov 2015

Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous

Doctoral Dissertations

An optimal nanoscale phase separation between the donor (generally, a conjugated polymer) and the acceptor (generally, a fullerene derivative) materials is one of the major requirements for obtaining high efficiency organic photovoltaic (OPV) device. Recent methods of controlling such nanostructure morphology in a bulkheterojunction (BHJ) OPV device involve addition of a small amount of solvent additive to the donor and acceptor solutions. The idea is to retain the acceptor materials into the solution for a longer period of time during the film solidification process, thus allowing the donor material to crystallize earlier. The ultimate morphology resulting from the solvent casting …


Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli Aug 2015

Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli

Doctoral Dissertations

This dissertation describes the synthesis of photo-crosslinkable copolymers and their utilization for the fabrication and testing of tunable and responsive one-dimensional (1D) photonic multilayers. Photonic multilayers exhibit structural color due to the interference of incident light at layer interfaces, providing a convenient route towards optically responsive materials that do not rely on potentially light- or oxygen-sensitive chromophore-containing pigments and dyes. A fabrication technique based on sequential spin-coating and crosslinking of photo-crosslinkable polymers is used to assemble tunable and responsive photonic multilayers. Chapter One introduces the fundamental underlying principles of 1D photonic structures and explores their importance in a variety of …


Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang May 2015

Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang

Doctoral Dissertations

This dissertation considers the development of porous carbon materials as the substrates for Al deposition/dissolution in an Al based ionic liquid flow battery (ILFB) and demonstration of an Al based hybrid supercapacitor. The Aluminum chloride/ 1-ethyl-3-methylimidazolium chloride chloroaluminate ionic liquid is utilized as the electrolyte for these Al based energy storage devices. The ILFB has less capital cost than the all-vanadium redox flow battery because of the inexpensive AlCl3. The feasibility to equip a tank of solid aluminum chloride in an ILFB system aiming to improve energy density is investigated. A critical range of temperature data (50-130 celsius …


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Mar 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials. This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively …


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Nov 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction. Hydrophilic MNPs were shown to drive the self-assembly of BCPs …


Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph Nov 2014

Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph

Doctoral Dissertations

The ability to define and control the topography of a surface has been studied extensively due to its importance in a wide variety of applications. The control of a non-planar topography would be very valuable since a number of structures that are pervasive in artificial applications (e.g. fibers, lenses) are curved interfaces. This potential of enabling applications that incorporate non-planar geometries was the motivation for this thesis. The first study of this thesis comprises the study of patterning the circumference of micrometer sized fibers. Specifically, a unique technique was described to pattern the fiber with a periodic array of colloids. …


Molecular Engineering Strategies For The Design And Synthesis Of New Organic Photovoltaic Materials, Paul J. Homnick Aug 2014

Molecular Engineering Strategies For The Design And Synthesis Of New Organic Photovoltaic Materials, Paul J. Homnick

Doctoral Dissertations

Dramatic improvements in organic photovoltaic device efficiency can be obtained by optimizing spectral absorbance and frontier molecular orbital (FMO) energies, increasing solid state exciton/charge mobility, and utilizing p-/n-type nanoarchitecture. Combining all of these properties into a new material presents a considerable synthetic challenge because potential commercial applications require materials that are high-performance and inexpensive. Thus, it is advantageous to design new materials using a versatile, modular synthetic approach that allows each design criterion to be engineered individually, in a synthetically efficient manner. Several strategies were successfully pursued using simple interchangeable electron donor and acceptor components as functional modules, which …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …


Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin Aug 2014

Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin

Doctoral Dissertations

Room temperature ionic liquids are an important class of materials due to their chemical tunability and numerous advantageous physicochemical properties. As a result, ionic liquids are currently being investigated for use in a wide array of chemical and electrochemical applications. Despite their great potential, however, the relationship between the chemical structure and physicochemical properties of ionic liquids is not well understood.

To this end, this dissertation presents experimental studies of the reorientational structural dynamics and charge transport properties of a variety of room temperature ionic liquids using quasielastic light scattering spectroscopy and broadband dielectric spectroscopy.

Studies of a series of …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …