Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 91

Full-Text Articles in Chemistry

Design, Synthesis And Study Of Functional Amphiphilic Polymers And Their Applications, Huan He Jul 2019

Design, Synthesis And Study Of Functional Amphiphilic Polymers And Their Applications, Huan He

Doctoral Dissertations

Amphiphilic homopolymers with high densities of functional groups are synthetically challenging. Thiol-yne nucleophilic click reactions have been investigated to introduce multiple functional groups in polymers with high density. An electron deficient alkyne group bearing methacrylate monomer was polymerized using reversible addition−fragmentation chain-transfer (RAFT) polymerization. Subsequently, the electron deficient alkyne group on polymer side chain was readily reacted with a thiol reagent using triethylamine (TEA) as the organocatalyst. This reaction was found to be very efficient under mild conditions. The resultant homopolymer bearing thiol vinyl ether functional groups could perform a second thiol addition with a stronger base, such as triazabicyclodecene(TBD), …


Modification Of 2d Materials Utilizing Functional Polymer Interfacial Layers, Ryan Selhorst Jul 2019

Modification Of 2d Materials Utilizing Functional Polymer Interfacial Layers, Ryan Selhorst

Doctoral Dissertations

This dissertation describes the modification of 2D transition metal dichalcogenides (TMDCs). These materials exhibit unique electronic properties, ranging from metallic to insulating, and can transport either electrons (n-type) or holes (p-type). Polymers containing electronically-active moieties offer a path to control the electronic properties of a 2D material without altering the inherent structure of the semiconductor. This dissertation focuses on the synthesis of polymers bearing chalcogen-rich or zwitterionic moieties to alter the electronic and solution properties of 2D materials. Chapter 2 describes polymers containing sulfur-rich tetrathiafulvalene (TTF) and their effects as electroactive coatings on the TMDC molybdenum disulfide (MoS2). …


Bio-Inspired Polymers That Bind And Deliver Protein Cargo, Nicholas D. Posey Mar 2019

Bio-Inspired Polymers That Bind And Deliver Protein Cargo, Nicholas D. Posey

Doctoral Dissertations

Delivering functional proteins and antibodies into cells can allow researchers to probe the intracellular environment, discover new cellular pathways, and pioneer new therapeutics. However, the entry of exogenous, charged molecules, like proteins, into the cell is usually restricted by the membrane, thereby hindering intracellular delivery. Membrane permeable molecules such as cell penetrating peptides (CPPs) and protein transduction domains (PTDs) can be used to bypass the cell membrane and deliver protein into the cell, but these peptides involve iterative and laborious syntheses and are limited in terms of their chemical diversity. This dissertation work overall focuses on the design and synthesis …


Enhanced Mass Spectrometric Analysis Of Peptides And Proteins Using Polymeric Reverse Micelles, Mahalia Adelina Corazon Paningbatan Serrano Mar 2019

Enhanced Mass Spectrometric Analysis Of Peptides And Proteins Using Polymeric Reverse Micelles, Mahalia Adelina Corazon Paningbatan Serrano

Doctoral Dissertations

Mass spectrometry (MS) has become a key and indispensable tool in the identification, characterization, and quantitative analysis of proteins owing to its universality, sensitivity, specificity, and its capability for multiplexed detection. Because biological samples containing these protein analytes are almost always complex systems, various techniques are employed in conjunction with MS to fully harness its analytical potential and enhance its detection capabilities. This dissertation explores the use of amphiphilic polymeric reverse micelles in enriching proteins and peptides from complex biological mixtures and in enhancing their mass spectrometric analysis. Fundamental studies that elucidate the molecular basis for the observed MS signal …


Design And Self-Assembly Of Responsive Scaffolds For Food And Sensing Applications, Uma Sridhar Mar 2019

Design And Self-Assembly Of Responsive Scaffolds For Food And Sensing Applications, Uma Sridhar

Doctoral Dissertations

Developing an understanding of how molecules, materials and complex systems contribute to biological functions is important since the interpretation of such mechanisms paves the way to further the development of materials that replicate natural functions or impart the observed properties to synthetic materials. The self-assembly of stimuli-responsive scaffolds based on micelles, liposomes, hydrogels and thin films has been of considerable interest. These systems need to be endowed with certain design features which influence the self-assembly and the responsiveness of the scaffold when subjected to external stimuli which could be physical, chemical or biological in nature. This kind of insight is …


Amphiphilic Assemblies With Responsive Characteristics At Surfaces And Interfaces, Piyachai Khomein Mar 2019

Amphiphilic Assemblies With Responsive Characteristics At Surfaces And Interfaces, Piyachai Khomein

Doctoral Dissertations

Amphiphilic self-assembly has gained a lot of interest in both academic and industrial fields. Amphiphiles have a unique ability to self-assemble in water, providing a range of nanosized materials of various morphologies. Many efforts have been dedicated to developing responsive amphiphilic assemblies by introducing responsive characteristics into the amphiphile building blocks. Responsive assemblies have been utilized in many promising applications such as targeted drug delivery systems, smart sensors, and electronic devices. Here, we reported four different types of responsive assemblies created via the incorporation of different responsive groups either at the material’s surface or interface. To achieve the responsive characteristics …


Film Stabilizaiton And Photophysics Of Unconventional Conjugated Polymers, Kara Martin Nov 2018

Film Stabilizaiton And Photophysics Of Unconventional Conjugated Polymers, Kara Martin

Doctoral Dissertations

Conjugated polymers offer a unique opportunity to develop high performing, flexible, lightweight, and large area electronic devices. With advances in conjugated polymer understanding and synthesis, the use of polymers as active layer materials in electronic applications, rather than just substrate materials, has become more promising. However, defects in morphological stability, as well as imperfect electronic understanding, are still present, limiting the use of these materials in commercializable electronics. Fundamental understanding of structure-property relationships can allow for facile synthetic solutions to major drawbacks of conjugated polymer integration in standard device architectures. Chapter 1 presents background research on the history of conjugated …


Investigating The Role Of Topological Frustration On Morphology Of Novel Multiblock Copolymers, Rohit Gupta Nov 2018

Investigating The Role Of Topological Frustration On Morphology Of Novel Multiblock Copolymers, Rohit Gupta

Doctoral Dissertations

Multiblock copolymers have gained considerable attention due to their ability to offer immense potential for designing soft materials with complex architectures for diverse applications. The enlarged parameter space offered by these multiblock copolymers gives access to a wide variety of multiply continuous morphologies which can be used to produce highly ordered nanostructures. The investigation on multiblock copolymers has been subjected to two critical limitations: (i) A suitable synthetic strategy for accessing these structures and (ii) computational tools which can help in application driven design of these molecules. In this dissertation, the goal was to develop methodologies for the synthesis of …


Impact Of Chemical Doping On The Thermoelectric Charge Transport Of Organic Semiconductors, Connor J. Boyle Nov 2018

Impact Of Chemical Doping On The Thermoelectric Charge Transport Of Organic Semiconductors, Connor J. Boyle

Doctoral Dissertations

The thermoelectric properties of organic semiconductors allow them to directly convert heat into electricity without the use of moving parts and to directly convert electricity into heat without the use of working fluids. These properties offer opportunities for the generation of electricity from non-conventional or renewable sources of heat and for refrigeration without the risk of leaking harmful working fluids at any length scale down to the nanoscale. Since organic materials are lightweight, flexible, and made from abundant resources, these opportunities could one day become affordable for widespread use and could be expanded to include specialized and otherwise difficult to …


The Balance Between Dipole-Dipole Interactions And Steric Exclusion On Ordering In Cationic Polymers, Chinomso Nwosu Oct 2018

The Balance Between Dipole-Dipole Interactions And Steric Exclusion On Ordering In Cationic Polymers, Chinomso Nwosu

Doctoral Dissertations

Structure-property correlations in charged polymers is an interesting facet of polymer science. Understanding the effects of intermolecular forces on the morphologies of polymers can lead to the design of membranes with desired structures to improve properties, for example ion conductivity. In random, comb-shaped polycations, competing intermolecular forces result in two different short-range orderings. Side-chain steric repulsion results in backbone-backbone morphology characterized by periodic spacing between polymer backbones. However, dipole - dipole attraction in these polycations can facilitate the formation of ionomer cluster morphology characterized by a spacing between clustered dipoles. Although both of these short-range orderings have disparate origins, their …


Surface Functionalization Of Fabrics And Threads For Smart Textiles, Morgan Baima Oct 2018

Surface Functionalization Of Fabrics And Threads For Smart Textiles, Morgan Baima

Doctoral Dissertations

The future of electronics is moving toward wearable devices and therefore requires a shift away from hard, inflexible materials towards fibers, threads, and fabrics that conform to the shape of the body. Therefore new methods for incorporating textiles as electronic components are needed to replace conventional processing techniques used with smooth, flat substrates like glass, silicon, and many polymers. Toward this end, this work investigates different methods that can be used to tune textile surfaces for electronic functionality, including weaving, solution grafting, and initiated chemical vapor deposition (iCVD). While all of these methods were used to make triboelectrically-active textiles, iCVD …


Polymeric Peptide Mimics For Protein Delivery, Coralie Backlund Jul 2018

Polymeric Peptide Mimics For Protein Delivery, Coralie Backlund

Doctoral Dissertations

The plasma membrane is a major obstacle in the development and use of biomacromolecules for intracellular applications. Consequently, proteins with intracellular targets represent an enormous, yet under studied avenue for therapeutics. Extended research has aimed at facilitating intracellular delivery of exogenous proteins using protein transduction domains (PTDs), which allow transport of bioactive molecules into cells. Synthetic polymers, inspired by PTDs, provide a well-controlled platform to vary molecular architecture for structure activity relationship studies. Specifically, this thesis focuses on the use of ring-opening metathesis, a facile and efficient polymerization technique, through which we can vary structural parameters to optimize delivery of …


Synthesis Of Novel Zwitterionic Polymers: From Functional Surfactants To Therapeutics, Matthew Skinner Mar 2018

Synthesis Of Novel Zwitterionic Polymers: From Functional Surfactants To Therapeutics, Matthew Skinner

Doctoral Dissertations

This dissertation describes the synthesis, characterization, and investigation of novel zwitterionic polymers containing phosphorylcholine (PC), sulfobetaine (SB), and functional choline phosphate (CP) zwitterions for use as surfactants, self-assembled nanomaterials, and therapeutics. Facile, reproducible, and modular chemistries were utilized for incorporating zwitterions into a range of polymer backbones, and strategies were developed for overcoming difficult challenges encountered in zwitterionic polymer synthesis, especially related to the varying solubility of zwitterions, hydrophobic polymers, and functional comonomers. Synthetic strategies utilized in this work give access to well-defined materials with narrow molecular weight distributions, tunable compositions and architectures, and versatile chemical functionality. Chapter 2 describes …


Design And Synthesis Of Stimuli-Responsive Polymeric Nanogels Towards Therapeutic Translation, Mallory R. Gordon Mar 2018

Design And Synthesis Of Stimuli-Responsive Polymeric Nanogels Towards Therapeutic Translation, Mallory R. Gordon

Doctoral Dissertations

In the application of delivery of therapeutics, nanostructures of various composition have been employed due to their capacity to act as a host for lipophilic payloads. Advances in the synthetic preparation, size, morphology, and chemical or physical characteristics of polymers have impacted their development and versatility. A detailed understanding of polymeric nanoparticle host-guest properties is crucial to their practical translation to specific delivery applications. Further, these features must be highly tailorable to overcome biological barriers, stably encapsulate their therapeutic contexts, and exhibit payload release selectively in the target environment. In this dissertation, we aim to rationally design polymeric nano-scale assemblies …


Molecular Design, Characterization, And Implementation Of Organic Semiconducting Oligothiophenes, Benjamin Cherniawski Mar 2018

Molecular Design, Characterization, And Implementation Of Organic Semiconducting Oligothiophenes, Benjamin Cherniawski

Doctoral Dissertations

This work describes new self-assembly strategies and realizes new directions for rational side chain design in organic semiconductors. I examined the synthesis and structure property relations of monomers and dimers of a benchmark organic semiconductor system using a variety of linear alkyl side chains. I observed critical onsets for packing trends based on alkyl side chain length in both monomers and dimers. Monomer systems exhibited a pronounced even-odd effect manifesting directly from side chain length. In the dimer systems, I observed spontaneous bimolecular crystal formation with PC61BM which undergoes an order-to-disorder transition at small side chain lengths. Combining …


Light-Harvesting And Light-Responsive Materials For Optoelectronic And Biological Applications, Youngju Bae Mar 2018

Light-Harvesting And Light-Responsive Materials For Optoelectronic And Biological Applications, Youngju Bae

Doctoral Dissertations

In photodynamic therapy, several critical standards are required of photosensitizers including high singlet oxygen quantum yield, biocompatibility in dark, and long term photochemical stability. In addition, current PDT systems lack active targeting strategies to tumor cells, and instead mainly rely on the natural distribution of PS in the body following injection and application of near-infrared light treatment in the tumor region. This thesis describes a series of BODIPY-based molecules that were designed, synthesized and studied as photosensitizers with high singlet oxygen generation capacity through utilizing the heavy atom effect. Additionally, aqueous solubility and active targeting capability were introduced by photosensitizer …


Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites And Interfaces, Daniel H. Flagg Nov 2017

Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites And Interfaces, Daniel H. Flagg

Doctoral Dissertations

Five research projects described. First, a reproducible, lab-scale synthesis of MQ silicone copolymers is presented. MQ copolymers are commercially important materials that have been ignored by the academic community. One possible reason for this is the difficulty of controlling and reproducing the preparative copolymerizations that have been reported. A reproducible method for lab-scale preparation was developed that controls molecular weight by splitting the copolymerization into the discrete steps of sol growth from silicate precursor and end-capping by trimethylsiloxy groups. Characterization of MQ products implicates that they are composed of highly condensed, polycyclic structures. The MQ copolymers prepared in the first …


Synthesis And Characterization Of Imidazole-Containing Conjugated Polymers, Jared D. Harris Nov 2017

Synthesis And Characterization Of Imidazole-Containing Conjugated Polymers, Jared D. Harris

Doctoral Dissertations

Semiconducting conjugated polymers hold tremendous promise as active layers for transformative electronic devices. This materials class benefits from the structural variety provided by organic chemistry such that highly tunable band structures are attainable for as-synthesized polymers. This dissertation describes the synthesis and characterization of novel imidazole-containing conjugated polymers for the purposes of (de)protonating the as-synthesized materials gaining conjugated poly(ionomer)s. (De)protonation easily enables band structure modification through manipulation of the materials’ ionization potential and electron affinity. Controlled exposure to acids and bases led to reversible (de)protonation observable via UV-visible and photoluminescence spectroscopies. (De)protonation’s effects on polymeric band structures was empirically and …


Influence Of Biomimetic Chelating Packaging On Natural Antimicrobial Efficacy, Paul Castrale Oct 2017

Influence Of Biomimetic Chelating Packaging On Natural Antimicrobial Efficacy, Paul Castrale

Masters Theses

The iron chelating molecule, ethylenediaminetetraacetic acid (EDTA) is used in food applications for the preservation of oxidation prone ingredients. Research has suggested that EDTA is also capable of enhancing the antimicrobial effectiveness of various compounds including naturally-derived antimicrobials. With consumer demand for cleaner food labels, there remains an opportunity to introduce new chelating technology to replace synthetically-derived EDTA. Through photographting and chemical conversion, hydroxamic acid ligands were covalently bound to polypropylene films resulting in polypropylene-graft-poly(hydroxamic acid) (PP-g-PHA). The resulting films demonstrated an ability to chelate 64 nmol/cm2 from an iron saturated environment or 163 nmol/cm …


Stimuli Responsive Polymeric Nanogels For Hydrophobics & Hydrophilics Delivery, Kishore Raghupathi Jul 2017

Stimuli Responsive Polymeric Nanogels For Hydrophobics & Hydrophilics Delivery, Kishore Raghupathi

Doctoral Dissertations

Stimuli responsive nanoparticles have gained significant interest in the drug delivery research. The essential goal of drug delivery is to improve the efficacy of drugs by increasing their stability and bioavailability. Small molecule hydrophobic drugs face limited bioavailability due to their poor water solubility. Biologic drugs on the other hand, lack bioavailability because of their degradation by various enzymes encountered during blood circulation. For a systemic delivery approach, depending on site of drug action, delivery vehicles must pass through several contrasting micro environments before delivering the cargo selectively at the target site. Therefore, it is essential that a delivery vehicle …


Thiol-Ene Chemistry As An Enabler Of New Polymer Structures And Architectures, Joel M. Sarapas Mar 2017

Thiol-Ene Chemistry As An Enabler Of New Polymer Structures And Architectures, Joel M. Sarapas

Doctoral Dissertations

This dissertation focuses on two distinct projects: the synthesis and design of novel cell penetrating peptides mimics (CPPMs), and the implementation of the thiol-ene click reaction to generate new polymer architectures and chemistries. Guanidinium-rich CPPMs were generated through both ROMP and RAFT polymerizations, allowing for a comparison to be made across polymer backbone chemistries with respect to both siRNA and protein cellular internalization. A particularly effective methacrylate derived block copolymer was able to deliver siRNA to nearly an entire Jurkat T cell population. The thiol-ene reaction was implemented initially within the context of improving material design for solid polymer electrolytes …


Functional Hydrophilic Polymers For Solution Assembly And Non-Viral Gene Therapy, Rachel A. Letteri Nov 2016

Functional Hydrophilic Polymers For Solution Assembly And Non-Viral Gene Therapy, Rachel A. Letteri

Doctoral Dissertations

This thesis examines functional hydrophilic polymers designed in linear and comb architectures and that carry functional moieties in the context of solution assembly and non-viral gene therapy. Specifically, polymers containing cations, zwitterions, and reactive groups are investigated as non-viral gene therapy reagents and at oil-water interfaces on droplets. Cations facilitate complexation of nucleic acids and interaction with cellular and nuclear membranes, while zwitterions impart stimuli-responsive solution properties and biocompatibility. Reactive groups, including alkenes, alkynes, and benzylic methylenes, permit post-polymerization modification leading to tunable polymer properties in solution and at interfaces. This work expands the knowledge base related to solution, interfacial, …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Nanomaterials At Liquid/Liquid Interfaces: Assembly And Rheology, Tao Feng Jul 2016

Nanomaterials At Liquid/Liquid Interfaces: Assembly And Rheology, Tao Feng

Doctoral Dissertations

This dissertation concentrated on the behavior of nanomaterials at liquid/liquid interfaces. A strategy of segregating acid-treated SWCNTs at oil/water interfaces was developed by adding amine-terminated polystyrene (PS-NH2) in the oil phase. Electrostatic binding between carboxylic acid of SWCNTs and amine drives the assembly of SWCNTs, monitored by pendant drop tensiometry and confocal microscopy. A sharp transition of interfacial segregation against SWCNT solution pH was revealed, with the transition point at the pKa of carboxyl. The reduced SWCNT surface charge density at low pH was found to be beneficial for segregation due to the attenuated repulsions between adsorbed …


Design, Synthesis, And Applications Of Nano-Assemblies Based On Amphiphilic Macromolecules, Hui Wang Jul 2016

Design, Synthesis, And Applications Of Nano-Assemblies Based On Amphiphilic Macromolecules, Hui Wang

Doctoral Dissertations

Recent progress in nanotechnology has been significantly impacting a variety of areas such as utilization in microelectronics, multiphase catalysis, sensing and therapeutics. Our interests are to develop new nanomaterials to understand their structure-property relationships and to utilize them for various applications. In this thesis, we discuss our findings on the design, synthesis and applications of nanomaterials formed by self-assembly of amphiphilic molecules. Micelles are self-assembled nanostructures formed by amphiphilic molecules. They are capable of sequestering hydrophobic guest molecules in an aqueous environment. Other than surfactants, micelles can also be formed by amphiphilic polymers or dendrimers, which are macromolecular surfactants in …


Design Of Romp-Based Protein Mimics For Sirna Delivery, Brittany M. Deronde Mar 2016

Design Of Romp-Based Protein Mimics For Sirna Delivery, Brittany M. Deronde

Doctoral Dissertations

Designing delivery agents for therapeutics is an ongoing challenge. As treatments and desired cargoes become more complex, the need for improved delivery vehicles becomes critical. Excellent delivery vehicles must ensure the stability of the cargo, maintain the cargo’s solubility, and promote efficient delivery and release. In order to address these issues, many research groups have looked to nature for design inspiration. Proteins, such as HIV-1 TAT and Antennapedia homeodomain protein, are capable of crossing cellular membranes. However, due to the complexities of their structures, they are synthetically challenging to reproduce in the laboratory setting. Being able to incorporate the key …


Stimuli Responsive Polymer Self-Assembly And Disassembly, Jiaming Zhuang Mar 2016

Stimuli Responsive Polymer Self-Assembly And Disassembly, Jiaming Zhuang

Doctoral Dissertations

Stimuli responsive polymer assemblies have been long investigated for drug application due to their flexibility for surface functionalization to achieve desired interfacial property and capability of acting as a host for payloads encapsulation. These interfacial and host-guest properties are very critical and need to be customized really depending on nature of cargos and specific delivery application. More importantly, these properties are always desired to be adaptable in different environments. For instance, adjustable interfacial property can facilitate the carrier to overcome a variety of different barriers before it reach the target while changeable host-guest property allows to selectively releasing the payload …


Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li Mar 2016

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li

Doctoral Dissertations

The major part of this dissertation discusses the engineering of the refractive index of materials using solution-processable polymer nanocomposites and their applications in building optical components and devices. Three particular polymer nanocomposites have been introduced to achieve materials with tunable refractive indices and enhanced optical properties, which can be used to manipulate the behavior of light or electromagnetic radiations. In the first system, polyhedral oligomeric silsesquioxane (POSS)/polymer nanocomposites are developed. Thin films with tunable, low refractive indicies were fabricated from the composites. The mechanical strength of these films was characterized, and their application in antireflective coatings is discussed. In the …


(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari Mar 2016

(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari

Doctoral Dissertations

The research in this dissertation is categorized into two parts. The first part is focused on investigation of order-to-disorder transitions (ODT) in nanocomposites of an amphiphilic block copolymer containing various hydrogen-bonded additives, and fabrication of novel mesoporous silica based materials by utilizing such nanocomposites as templates. Disordered Pluronic®, poly(ethylene oxide) (PEO)−poly(propylene oxide) (PPO)−PEO triblock copolymer upon blending with small molecule additives containing hydrogen-bond-donating functional groups (carboxyl or hydroxyl) result into ordered nanoscale morphologies by preferentially interacting with the hydrophilic PEO chains in the Pluronic®. The dependence of ODT-temperature in these novel Pluronic®/small-molecule-additive complexes on composition, number and type of functional …