Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 44 of 44

Full-Text Articles in Chemistry

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Final Report -Phase I 09/01/2001-08/30/2002, Samir Moujaes, Yitung Chen Aug 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Final Report -Phase I 09/01/2001-08/30/2002, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Annual Progress Report (May 2001 – May 2002), Ajit K. Roy, Brendan O'Toole Jun 2002

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Annual Progress Report (May 2001 – May 2002), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. Further, the localized corrosion behavior of these alloys …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 03/16/02- 06/15/02, Samir Moujaes, Yitung Chen Jun 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 03/16/02- 06/15/02, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high oxygen concentration, …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Phase Two, Samir Moujaes, Yitung Chen May 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Phase Two, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The proposed work will combine chemical kinetics and hydrodynamics in target and test-loop lead-bismuth eutectic (LBE) systems to model system corrosion effects. This approach will result in a predicative tool that can be validated with corrosion test data, used to systematically design tests and interpret the results, and provide guidance for optimization in LBE system designs. The task includes two subtasks. The first subtask is to try to develop the necessary predictive tools to be able to predict the levels of oxygen and corrosion products close to the boundary layer through the use of Computational Fluid Dynamics (CFD) modeling. The …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (December 1, 2001 – February 28, 2002) Report, Ajit K. Roy, Brendan O'Toole Mar 2002

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (December 1, 2001 – February 28, 2002) Report, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including HT- 9, EP 823 and 422. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these alloys will be evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. The extent and morphology of cracking of these alloys will further be evaluated …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 11/16/01- 2/15/02, Samir Moujaes, Yitung Chen Feb 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 11/16/01- 2/15/02, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application.

Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. The transport of oxygen and corrosion products, their interaction and variation of corrosion/precipitation along the flow are not well understood.

The first subtask of this project involves using a …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems, Ajit K. Roy, Brendan O'Toole Feb 2002

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the effect of hydrogen on cracking of candidate target materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The test materials will undergo appropriate thermal treatments prior to being hydrogen-charged by potentiostatic cathodic polarization technique in a simulated aqueous environment at different temperatures of interest. The specimens, upon completion of testing, will be metallographically examined. Further, the scanning electron microscopy (SEM) will be used to determine the extent and nature of cracking in the specimens tested. The thrust of the proposed …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems, Ajit K. Roy, Brendan O'Toole, Zhiyong Wang, David W. Hatchett Jan 2002

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems, Ajit K. Roy, Brendan O'Toole, Zhiyong Wang, David W. Hatchett

Transmutation Sciences Materials (TRP)

Spallation-neutron-sources, such as those under investigation for use in accelerator-driven transmutation systems, generate neutrons through the collision of high-energy protons, or charged hydrogen atoms, with heavy metal targets such as lead. As a result, these systems also tend to deposit a significant amount of hydrogen in the materials of the transmuter target and superstructure. This can result in accelerated corrosion and changes in the properties of the exposed materials. Of particular importance is a phenomenon called hydrogen embrittlement, in which materials lose their ductility (ability to deform under stress) and become brittle (more susceptible to fracture) after reacting with hydrogen. …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Task V 4th Quarterly Report, Samir Moujaes Jan 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Task V 4th Quarterly Report, Samir Moujaes

Transmutation Sciences Materials (TRP)

The project is moving on target with the newly realigned objective set for the Phase I. Through close communications with Dr. Li and Dr. Jinsuo Zhang from LANL a realignment of the simulation work has been recommended. The reason for that is the vendor of STAR-CD/CHEMKIN had not perfected yet the final coupling of the post processing of output for any potential surface chemistry reaction taking place on the inside pipe surface of the LBE loop. This is because the coupling of CHEMKIN and STAR-CD has been done fairly recently.

Our final effort has been to generate using an innovative …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

Many of the international efforts to develop transmutation technology, including the U.S., Russian, and European scientific communities, have determined that lead bismuth eutectic (LBE) is a potential material for use as a both a spallation target and a coolant. To exploit this potential, a more thorough understanding of the effect and rates of corrosion on steels, particularly non-Russian alloys, inside the LBE systems is required. Properly controlling the oxygen content in LBE systems has been observed to drastically reduce the corrosion of structural steels in LBE. However, the transport of oxygen and formation of corrosion products is not well understood; …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (September 1 – November 30, 2001) Report, Ajit K. Roy, Brendan O'Toole Nov 2001

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (September 1 – November 30, 2001) Report, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including HT- 9, EP 823 and 422. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these alloys will be evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. The extent and morphology of cracking of these alloys will further be evaluated …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report August 16,2001- November 15, 2001, Samir Moujaes, Yitung Chen Nov 2001

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report August 16,2001- November 15, 2001, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application.

Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. The transport of oxygen and corrosion products, their interaction and variation of corrosion/precipitation along the flow are not well understood.

The first subtask of this project involves using a …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Aug 2001

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The proposed work will combine chemical kinetics and hydrodynamics in target and test-loop lead-bismuth eutectic (LBE) systems to model system corrosion effects. This approach will result in a predicative tool that can be validated with corrosion test data, used to systematically design tests and interpret the results, and provide guidance for optimization in LBE system designs. The task includes of two subtasks. The first subtask is to try to develop the necessary predictive tools to be able to predict the levels of oxygen and corrosion products close to the boundary layer through the use of Computational Fluid Dynamics (CFD) modeling. …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems, Brendan O'Toole, Ajit K. Roy Aug 2001

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems, Brendan O'Toole, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the effect of hydrogen on cracking of candidate target materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The test materials will undergo appropriate thermal treatments prior to being hydrogen-charged by potentiostatic cathodic polarization technique in a simulated aqueous environment at different temperatures of interest. The specimens, upon completion of testing, will be metallographically examined. Further, the scanning electron microscopy (SEM) will be used to determine the extent and nature of cracking in the specimens tested. The thrust of the proposed …