Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 38 of 38

Full-Text Articles in Chemistry

From Mollusks To Medicine: A Venomics Approach For The Discovery And Characterization Of Therapeutics From Terebridae Peptide Toxins, Aida Verdes, Prachi Anand, Juliette Gorson, Stephen Jannetti, Patrick Kelly, Abba Leffler, Danny Simpson, Girish Ramrattan, Mandë Holford Apr 2016

From Mollusks To Medicine: A Venomics Approach For The Discovery And Characterization Of Therapeutics From Terebridae Peptide Toxins, Aida Verdes, Prachi Anand, Juliette Gorson, Stephen Jannetti, Patrick Kelly, Abba Leffler, Danny Simpson, Girish Ramrattan, Mandë Holford

Publications and Research

Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics …


Discovery And Characterisation Of A Novel Toxin From Dendroaspis Angusticeps, Named Tx7335, That Activates The Potassium Channel Kcsa, Ivan O. Rivera-Torres, Tony B. Jin, Martine Cadene, Brian T. Chait, Sébastien F. Poget Apr 2016

Discovery And Characterisation Of A Novel Toxin From Dendroaspis Angusticeps, Named Tx7335, That Activates The Potassium Channel Kcsa, Ivan O. Rivera-Torres, Tony B. Jin, Martine Cadene, Brian T. Chait, Sébastien F. Poget

Publications and Research

Due to their central role in essential physiological processes, potassium channels are common targets for animal toxins. These toxins in turn are of great value as tools for studying channel function and as lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern green mamba snake (Dendroaspis angusticeps) venom. Sequencing of the toxin by Edman degradation and mass spectrometry revealed a 63 amino acid residue peptide with 4 disulphide bonds that belongs to the three-finger toxin family, but with a unique modification …


Cladribine Analogues Via O6-(Benzotriazolyl) Derivatives Of Guanine Nucleosides, Sakilam Satishkumar, Prasanna K. Vuram, Siva Subrahmanyam Relangi, Venkateshwarlu Gurram, Hong Zhou, Robert J. Kreitman, Michelle M. Martínez Montemayor, Lijia Yang, Muralidharan Kaliyaperumal, Somesh Sharma, Narender Pottabathini, Mahesh K. Lakshman Oct 2015

Cladribine Analogues Via O6-(Benzotriazolyl) Derivatives Of Guanine Nucleosides, Sakilam Satishkumar, Prasanna K. Vuram, Siva Subrahmanyam Relangi, Venkateshwarlu Gurram, Hong Zhou, Robert J. Kreitman, Michelle M. Martínez Montemayor, Lijia Yang, Muralidharan Kaliyaperumal, Somesh Sharma, Narender Pottabathini, Mahesh K. Lakshman

Publications and Research

Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL) and chronic lymphocytic …


Two Distinct Modes Of Metal Ion Binding In The Nuclease Active Site Of A Viral Dna-Packaging Terminase: Insight Into The Two-Metal-Ion Catalytic Mechanism, Haiyan Zhao, Zihan Lin, Anna Y. Lynn, Brittany Varnado, John A. Beutler, Ryan P. Murelli, Stuart F.J. Le Grice, Liang Tang Oct 2015

Two Distinct Modes Of Metal Ion Binding In The Nuclease Active Site Of A Viral Dna-Packaging Terminase: Insight Into The Two-Metal-Ion Catalytic Mechanism, Haiyan Zhao, Zihan Lin, Anna Y. Lynn, Brittany Varnado, John A. Beutler, Ryan P. Murelli, Stuart F.J. Le Grice, Liang Tang

Publications and Research

Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 A° . Such proximity of the two metal ions may play an essential role in catalysis by …


Development Of Cell-Active Inhibitors And Activity-Based Probe Of Cysteine Cathepsins, Dibyendu Dana Oct 2014

Development Of Cell-Active Inhibitors And Activity-Based Probe Of Cysteine Cathepsins, Dibyendu Dana

Dissertations, Theses, and Capstone Projects

Cysteine cathepsins are an important class of enzymes that coordinate a variety of important cellular processes, and are implicated in various types of human diseases. Still however, many of their cellular function remain poorly understood. Chemical biology approaches employing small molecules can be utilized for this purpose. Unfortunately small molecule probes that are cell-permeable and non-peptidyl in nature are scarcely available.

In this work, first a library of sulfonyloxiranes is synthesized. From this library, 2-(2-ethylphenylsulfonyl)oxirane is identified as a selective inhibitor of cysteine cathepsins. Cell-based study reveals that 2-(2-ethylphenylsulfonyl)oxirane is a cell-permeable, covalent, and irreversible inhibitor of cathepsin B with …


Interactions Of Eukaryotic Translation Initiation Factors And 3' Untranslated Region Of Barley Yellow Dwarf Virus Mrna During Protein Synthesis: A Study Of Equilibrium Binding, Kinetics And Thermodynamics, Bidisha Banerjee Jun 2014

Interactions Of Eukaryotic Translation Initiation Factors And 3' Untranslated Region Of Barley Yellow Dwarf Virus Mrna During Protein Synthesis: A Study Of Equilibrium Binding, Kinetics And Thermodynamics, Bidisha Banerjee

Dissertations, Theses, and Capstone Projects

Eukaryotic initiation factor (eIF) 4F binding to mRNA is the first committed step in cap-dependent protein synthesis. Barley Yellow Dwarf Virus (BYDV) employs a cap-independent mechanism of translation initiation which is mediated by a structural element BTE (BYDV translation element) located in the 3’ UTR of its mRNA. eIF4F bound the BTE and a translational inactive mutant with high affinity; thus questioning the role of eIF4F in translation of BYDV. To examine the effects of eIF4F in BYDV translation initiation, BTE mutants with widely different in vitro translation efficiencies ranging from 5-164% compared to WT were studied. Using fluorescence anisotropy …


Conformational Features Of The Human U2-U6 Snrna Complex, Ravichandra Bachu Feb 2014

Conformational Features Of The Human U2-U6 Snrna Complex, Ravichandra Bachu

Dissertations, Theses, and Capstone Projects

The splicing of precursor messenger (pre-m) RNA, during which noncoding intervening sequences are excised and flanking coding regions ligated, is an integral reaction of gene expression. In eukaryotes, it is carried out by a dynamic RNA-protein complex called the spliceosome, in which five small nuclear (sn) RNA components are actively involved in recognition and chemical aspects of the process. A complex formed between U2 and U6 snRNAs is implicated in the chemistry of pre-mRNA splicing. The catalytic activity of the U2-U6 snRNA complex is dependent on the presence of Mg2+ ions, and the complex has been shown to have several …


Polycationic Glycosides, Robert Engel, Ishrat Ghani, Diego Montenegro, Marie Thomas, Barbara Klaritch-Vrana, Alejandra Castaño, Laura Friedman, Jay Leb, Leah Rothman, Heidi Lee, Craig Capodiferro, Daniel Ambinder, Eve Cere, Christopher Awad, Faiza Sheikh, Jaimelee Rizzo, Lisa-Marie Nisbett, Erika Testani, Karin Melkonian Feb 2011

Polycationic Glycosides, Robert Engel, Ishrat Ghani, Diego Montenegro, Marie Thomas, Barbara Klaritch-Vrana, Alejandra Castaño, Laura Friedman, Jay Leb, Leah Rothman, Heidi Lee, Craig Capodiferro, Daniel Ambinder, Eve Cere, Christopher Awad, Faiza Sheikh, Jaimelee Rizzo, Lisa-Marie Nisbett, Erika Testani, Karin Melkonian

Publications and Research

Cationic lipids have long been known to serve as antibacterial and antifungal agents. Prior efforts with attachment of cationic lipids to carbohydrate-based surfaces have suggested the possibility that carbohydrate-attached cationic lipids might serve as antibacterial and antifungal pharmaceutical agents. Toward the understanding of this possibility, we have synthesized several series of cationic lipids attached to a variety of glycosides with the intent of generating antimicrobial agents that would meet the requirement for serving as a pharmaceutical agent, specifically that the agent be effective at a very low concentration as well as being biodegradable within the organism being treated. The initial …