Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Star formation

Articles 1 - 3 of 3

Full-Text Articles in Stars, Interstellar Medium and the Galaxy

How Do Galaxies Form Their Stars Over Cosmic Time?, Jed H. Mckinney Oct 2022

How Do Galaxies Form Their Stars Over Cosmic Time?, Jed H. Mckinney

Doctoral Dissertations

Galaxies in the past were forming more stars than those today, but the driving force behind this increase in activity remains uncertain. In this thesis I explore the origin of high star-formation rates today and in the past by studying the properties of gas and dust in the cold interstellar medium (ISM) of dusty galaxies over cosmic time. Critically, we do not yet understand how these galaxies could form so many stars. This work began with my discovery of unusual infrared (IR) emission line ratios in the class of dusty galaxies where most of the Universe’s stars were formed. To …


Observational Studies Of Fragmentation In Molecular Clouds, Riwaj Pokhrel Oct 2019

Observational Studies Of Fragmentation In Molecular Clouds, Riwaj Pokhrel

Doctoral Dissertations

In this dissertation, I explore fragmentation physics in multiple scales in nearby molecular clouds and discuss some implications of fragmentation for cloud structure formation and star formation, primarily by analyzing multi-wavelength observations of dust emission. First, I tested the complete thermal and combined thermal and nonthermal support mechanisms that balance gravitational contraction at multiple scales in the Perseus molecular cloud. I found that the observed multiscale structures in Perseus are consistent with an inefficient thermal Jeans fragmentation, where the Jeans efficiency increases from the largest scale ($\gtrsim$10s of pc) to the smallest scale ($\sim$10s of AU). Next, I studied the …


The Impact Of Protostellar Feedback On Astrochemistry, Brandt Gaches Oct 2019

The Impact Of Protostellar Feedback On Astrochemistry, Brandt Gaches

Doctoral Dissertations

Star formation is the lynch pin that lies in between the scales of galaxy and planet formation. Observational studies of molecular clouds, the sites of star formation, primarly use molecular line emission, providing dynamical and chemical information. Two of the key parameters of astrochemical models are far-ultraviolet (FUV) flux and the cosmic ray ionization rate. We use analytic accretion histories to predict the bolometric and FUV luminosities of protostar clusters and compare different histories with observed bolometric luminosities. We find that the Tapered Turbulent Core model best represents the observed luminosities and their dispersion. We extend the models to calculate …