Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Stars, Interstellar Medium and the Galaxy

Maximizing Precision Of Variable Star Photometry With Digital Cameras In Suburban Environments, David Hergesheimer Aug 2014

Maximizing Precision Of Variable Star Photometry With Digital Cameras In Suburban Environments, David Hergesheimer

STAR Program Research Presentations

Photometry is the measure of the brightness of an object. When making such measurements on stars, it is done is units of magnitude, which is on a logarithmic scale with a base of ~2.512. Variable star photometry using a commercially available digital camera is not going to be as accurate and precise as equipment used by astronomers, and because of the logarithmic scale of magnitude used, determining how much of an effect different error reduction strategies have is not straightforward, and is best done experimentally.

My research is conducting photometry on variable stars (changing brightness) with a digital camera, and …


Light Pollution Research Through Citizen Science, John Kanemoto Aug 2014

Light Pollution Research Through Citizen Science, John Kanemoto

STAR Program Research Presentations

Light pollution (LP) can disrupt and/or degrade the health of all living things, as well as, their environments. The goal of my research at the NOAO was to check the accuracy of the citizen science LP reporting systems entitled: Globe at Night (GaN), Dark Sky Meter (DSM), and Loss of the Night (LoN). On the GaN webpage, the darkness of the night sky (DotNS) is reported by selecting a magnitude chart. Each magnitude chart has a different density/number of stars around a specific constellation. The greater number of stars implies a darker night sky. Within the DSM iPhone application, a …


Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson Aug 2013

Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson

STAR Program Research Presentations

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is a converted 747SP that houses a 2.5 m telescope that observes the sky through an opening in the side of the aircraft. Because it flies at altitudes up to 45,000 feet, SOFIA gets 99.99% transmission in the infrared. Multiple science instruments mount one at a time on the telescope to interpret infrared and visible light from target sources. Ball Infrared Black (BIRB) currently coats everything that the optics sees inside the telescope assembly (TA) cavity in order to eliminate noise from the glow of background sky, aircraft exhaust, and other sources. A …


Analyzing The Performance Of The Sofia Infrared Telescope, Sarah M. Bass, Jeffrey Van Cleve, Zaheer Ali Aug 2013

Analyzing The Performance Of The Sofia Infrared Telescope, Sarah M. Bass, Jeffrey Van Cleve, Zaheer Ali

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne near-space observatory onboard a modified Boeing 747-SP aircraft, which flies at altitudes of 45,000 ft., above 99% of the Earth’s water vapor. SOFIA contains an effective 2.5 m infrared (IR) telescope that has a dichroic tertiary mirror, reflecting IR and visible wavelengths to the science instrument (SI) and focal plane imager (FPI), respectively. To date, seven different SIs have been designed to cover a wide range of wavelengths and spectral resolutions. Since the telescope operates in the infrared, different techniques, including chopping, nodding, and dithering, are used to reduce the …


Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach Aug 2013

Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach

STAR Program Research Presentations

FLITECAM Data Processing Validation

Many of the challenges that come from working with astronomical imaging arise from the reduction of raw data into scientifically meaningful data. First Light Infrared Test CAMera (FLITECAM) is an infrared camera operating in the 1.0–5.5 μm waveband on board SOFIA (Stratospheric Observatory For Infrared Astronomy). Due to the significant noise from the atmosphere and the camera itself, astronomers have developed many methods to reduce the effects of atmospheric and instrumental emission. The FLITECAM Data Reduction Program (FDRP) is a program, developed at SOFIA Science Center, subtracts darks, removes flats, and dithers images.

This project contains …


Designing A Cold Source To Be Integrated With The Existing Telescope Assembly Alignment Simulator, Rebecca L. Salvemini, Carey Baxter, Zaheer Ali, Greg Perryman, Robert Thompson, Daniel Nolan Aug 2013

Designing A Cold Source To Be Integrated With The Existing Telescope Assembly Alignment Simulator, Rebecca L. Salvemini, Carey Baxter, Zaheer Ali, Greg Perryman, Robert Thompson, Daniel Nolan

STAR Program Research Presentations

The stratospheric observatory for infrared astronomy (SOFIA), is a modified Boeing 747-SP with a 2.5m telescope mounted inside. SOFIA flies at an altitude of 45,000 feet, above 99% of the water vapor in the atmosphere, allowing transmission of most infrared radiation. SOFIA has seven different science instruments (SI) that can be used to collect astronomical data, enabling scientists to look at many different wavelengths of infrared and visible radiation.


Abundance Patterns In The Spiral Galaxy Messier 33, Melissa A. Siemer, Ravi Sankrit Jan 2013

Abundance Patterns In The Spiral Galaxy Messier 33, Melissa A. Siemer, Ravi Sankrit

STAR Program Research Presentations

Messier 33 (M33) is a spiral disk galaxy, similar to our galaxy, approximately 3 million light-years from Earth. Because of its proximity to Earth and face-on viewing angle, it is easy to see individual objects. Consequently, M33 is in an ideal position for obtaining data on elemental abundances. By studying M33, we learn how galaxies like our own form and change over time.

We use published optical spectroscopic data, obtained and assembled from online sources, to map the abundances of various elements (Helium, Nitrogen, Oxygen, Neon, Argon, Sulfur) in the planetary nebula and HII region populations of M33. We classify …


Seeing Through A Cloudy Glass: Putting Limits On Planetary Nebulae Abundances Using Photoionization Modeling., Peter R. Sullivan, Ravi Sankrit Jan 2013

Seeing Through A Cloudy Glass: Putting Limits On Planetary Nebulae Abundances Using Photoionization Modeling., Peter R. Sullivan, Ravi Sankrit

STAR Program Research Presentations

Planetary nebulae (PNe) form around low to intermediate mass stars transitioning from the giant branch to white dwarf phase. The outer layer of the star is ejected during the transition and this gas, ionized by the central star, emits a line-spectrum. This spectrum traces the chemical abundances that were characteristic of the interstellar medium in which the star formed (e.g. oxygen) as well as of the elements created by these progenitor stars (e.g. nitrogen) aiding our understanding of chemical evolution of galaxies. In this project, we use modeling of the emission lines of PNe to determine the accuracy of direct …


Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson Aug 2012

Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson

STAR Program Research Presentations

The Telescope Assembly Alignment Simulator (TAAS) calibrates scientific instruments (SI’s) that are installed on the Stratospheric Observatory For Infrared Astronomy (SOFIA). An SI’s accuracy is directly dependent on the consistent performance of the TAAS, which has never been fully characterized. After designing various thermal and optical experiments to identify the current unknowns of TAAS, we now have a far better grasp on how the equipment behaves.


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR Program Research Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.