Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Stars, Interstellar Medium and the Galaxy

Connecting The Optical Regime To The X-Ray In Neutron Star Low Mass X-Ray Binaries, Alexander B. Igl Jul 2023

Connecting The Optical Regime To The X-Ray In Neutron Star Low Mass X-Ray Binaries, Alexander B. Igl

LSU Doctoral Dissertations

Using Rossi X-Ray Timing Explorer and Otto Struve Telescope data of low mass X-ray binaries (LMXBs) Cyg X-2 and Sco X-1, the optical regime’s relationship to the X-ray was investigated through several angles. Discrete cross correlations using the optical and X-ray data revealed evidence of reprocessing in both datasets. These were more consistently present in Sco X-1, where both small and obvious features were seen at less than 4 s of optical lag. The size of these lags makes it likely that most of the reprocessing is taking place on the accretion disk. Parameterization of the Z tracks led to …


Stellar Binaries And Post-Merger Evolution: A Framework For Stellar Evolution And Nucleosynthesis In R Coronae Borealis Stars, Bradley Munson Mar 2023

Stellar Binaries And Post-Merger Evolution: A Framework For Stellar Evolution And Nucleosynthesis In R Coronae Borealis Stars, Bradley Munson

LSU Doctoral Dissertations

We have developed a framework for simulating binary stars through all three relevant
timescales: the dynamical merger, thermal, and nuclear evolution. The framework begins by simulating a dynamical merger in a 3-dimensional hydrodynamics adaptive mesh refinement code, Octo-Tiger, and performing a spherical averaging calculation to map the post-merger remnant into the 1-dimensional stellar evolution code, MESA. In this work, we primarily utilize this framework for simulating double white dwarf mergers, which are believed to be the progenitor to R Coronae Borealis (RCB) stars. We evolve the post-merger in MESA and compare the computed surface abundances to those observed …


Ligers Interferometric Survey Of M Dwarf Diameters, Tyler Gregory Ellis May 2022

Ligers Interferometric Survey Of M Dwarf Diameters, Tyler Gregory Ellis

LSU Doctoral Dissertations

In this dissertation, I present the largest single collection of M dwarf stellar radii in over a decade and contextualize these measurements with the systematic model discrepancies. The measurements of stellar angular diameters are also important in the quantification of the properties of exoplanets. In order to estimate the property of the exoplanet, it is first necessary to quantify the properties of the planet's host star. Using the survey results complemented with previous direct observations of the angular diameters of low mass stars, I develop updated updated surface brightness relationships. These relationships allow predictions of angular diameters using easy to …


The Spectra Of Hydrogen-Deficient Carbon Stars: The Effects Of Evolution And Nucleosynthesis, Courtney Lauren Crawford Mar 2022

The Spectra Of Hydrogen-Deficient Carbon Stars: The Effects Of Evolution And Nucleosynthesis, Courtney Lauren Crawford

LSU Doctoral Dissertations

The rare class of stars known as the Hydrogen-deficient Carbon (HdC) stars includes the R Coronae Borealis (RCB) variables and the non-variable Dustless HdC (dLHdC) stars. These stars are believed to be formed via the merger of two white dwarf (WD) stars. They are known to exhibit many spectral peculiarities, such as partial helium burning products, enhancement of s-processed material and severe hydrogen-deficiency. In this work I explore many facets of HdC evolution. I begin by creating 18 HdC models in the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA) by merging two WD progenitors and evolving the …


Classifying Soft X-Ray Objects In The Galactic Bulge, Joshua D. Wetuski Oct 2021

Classifying Soft X-Ray Objects In The Galactic Bulge, Joshua D. Wetuski

LSU Doctoral Dissertations

The Galactic Bulge Survey (GBS) is a broad and shallow X-ray survey designed to detect quiescent X-ray binary systems in the direction of the Milky Way bulge, which include objects such as low-mass X-ray binaries, cataclysmic variables, and symbiotic binaries. LMXBs can provide constraints to the neutron star equation of state and symbiotic systems and are likely progenitors of double white dwarf systems which are themselves candidate progenitors to type Ia supernova. We seek to improve identification and classification of optical counterparts to GBS in several ways. By improving upon the original GBS, an updated catalog was created to help …


Stellar Nucleosynthesis: Direct Measurement Of The Neutron-Capture Cross Sections Of Stable Germanium Isotopes And Design Of A Next Generation Ion Trap For The Study Of Beta-Delayed Neutron Emission, Alexander Laminack Jan 2020

Stellar Nucleosynthesis: Direct Measurement Of The Neutron-Capture Cross Sections Of Stable Germanium Isotopes And Design Of A Next Generation Ion Trap For The Study Of Beta-Delayed Neutron Emission, Alexander Laminack

LSU Doctoral Dissertations

Knowledge of stellar nuclear reaction rates is critical to understanding the cosmic origins of the abundances of elements. In order to determine these reaction rates, accurate measurements of nuclear cross sections are needed. This thesis presents the results of an experiment to directly measure the neutron capture cross sections of 70-Ge, 72-Ge, 74-Ge, and 76-Ge. These measurements were performed at the Los Alamos Neutron Science CEnter (LANSCE) using the Detector for Advanced Neutron Capture Experiments (DANCE). This is the first direct measurement for many of these isotopes across the neutron energy spectrum of 10 eV to 1 MeV using the …


Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss Nov 2019

Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss

LSU Doctoral Dissertations

Clustering in nuclear systems has broad impacts on all phases of stellar burning, and plays a significant role in our understanding of nucleosynthesis, or how and where nuclei are produced in the universe. The role of alpha particles in particular is extremely important for nuclear astrophysics: 4He was one of the earliest elements produced in the Big Bang, it is one of the most abundant elements in the universe, and helium burning -- in particular, the triple-alpha process -- is one of the most important ``engines'' in stars. To better understand nucleosynthesis and stellar burning, then, it is important …