Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cosmology, Relativity, and Gravity

Reissner–Nordstrom Expansion, Emil Prodanov, Rossen Ivanov, Vesselin Gueorguiev Jan 2007

Reissner–Nordstrom Expansion, Emil Prodanov, Rossen Ivanov, Vesselin Gueorguiev

Articles

We propose a classical mechanism for the cosmic expansion during the radiation-dominated era, assuming the Universe as a two-component gas. The first component is the ultra-relativistic “standard” fraction described by an equation of state of an ideal quantum gas of massless particles. The second component consist of superheavy charged particles and their interaction with the “standard” fraction drives the expansion. This interaction is described by the Reissner–Nordstr¨om metric purely geometrically — the superheavy charged particles are modeled as zero-dimensional naked singularities which exhibit gravitational repulsion. The radius of a repulsive sphere, surrounding a naked singularity of charge Q, is inversely …


Riemann Tensor Of The Ambient Universe, The Dilaton, And Newton’S Constant, Rossen Ivanov, Emil Prodanov Jan 2004

Riemann Tensor Of The Ambient Universe, The Dilaton, And Newton’S Constant, Rossen Ivanov, Emil Prodanov

Articles

We investigate a four-dimensional world, embedded into a five-dimensional spacetime, and find the five-dimensional Riemann tensor via generalisation of the Gauss (--Codacci) equations. We then derive the generalised equations of the four-dimensional world and also show that the square of the dilaton field is equal to the Newton's constant. We find plausable constant and non-constant solutions for the dilaton. Comment: 5 pages, revtex


Bouncing Branes, Emil Prodanov Jan 2002

Bouncing Branes, Emil Prodanov

Articles

Two classical scalar fields are minimally coupled to gravity in the Kachru-Shulz-Silverstein scenario with a rolling fifth radius. A Tolman wormhole solution is found for a R x S^3 brane with Lorentz metric and for a R x AdS_3 brane with positive definite metric.