Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cosmology, Relativity, and Gravity

Maximum Likelihood Analysis Of Systematic Errors In Interferometric Observations Of The Cosmic Microwave Background, Le Zhang, Ata Karakci, Paul M. Sutter, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt Jun 2013

Maximum Likelihood Analysis Of Systematic Errors In Interferometric Observations Of The Cosmic Microwave Background, Le Zhang, Ata Karakci, Paul M. Sutter, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt

Physics Faculty Publications

We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilities and estimate power spectra using the statistically optimal maximum likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that does not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward manner. We find that, in order to accurately …


Bayesian Inference Of Polarized Cosmic Microwave Background Power Spectra From Interferometric Data, Ata Karakci, P. M. Sutter, Le Zhang, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt Jan 2013

Bayesian Inference Of Polarized Cosmic Microwave Background Power Spectra From Interferometric Data, Ata Karakci, P. M. Sutter, Le Zhang, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt

Physics Faculty Publications

Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having more manageable systematics, interferometers prove to have a substantial advantage over imagers in detecting such faint signals. Here, we present a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. We demonstrate the validity of the method in the flat-sky approximation for a simulation of an …


Interpretation Of The Arcade 2 Absolute Sky Brightness Measurement, M. Seiffert, D. J. Fixsen, A. Kogut, S. M. Levin, M. Limon, P. M. Lubin, P. Mirel, Jack Singal, T. Villela, E. Wollack, C. A. Wuensche Jun 2011

Interpretation Of The Arcade 2 Absolute Sky Brightness Measurement, M. Seiffert, D. J. Fixsen, A. Kogut, S. M. Levin, M. Limon, P. M. Lubin, P. Mirel, Jack Singal, T. Villela, E. Wollack, C. A. Wuensche

Physics Faculty Publications

We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies, to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral …


Contamination Cannot Explain The Lack Of Large-Scale Power In The Cosmic Microwave Background Radiation, Emory F. Bunn, Austin Bourdon Dec 2008

Contamination Cannot Explain The Lack Of Large-Scale Power In The Cosmic Microwave Background Radiation, Emory F. Bunn, Austin Bourdon

Physics Faculty Publications

Several anomalies appear to be present in the large-angle cosmic microwave background (CMB) anisotropy maps of the Wilkinson Microwave Anisotropy Probe. One of these is a lack of large-scale power. Because the data otherwise match standard models extremely well, it is natural to consider perturbations of the standard model as possible explanations. We show that, as long as the source of the perturbation is statistically independent of the source of the primary CMB anisotropy, no such model can explain this large-scale power deficit. On the contrary, any such perturbation always reduces the probability of obtaining any given low value of …